关注
Qinsheng Zhang
Qinsheng Zhang
在 gatech.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
ediffi: Text-to-image diffusion models with an ensemble of expert denoisers
Y Balaji, S Nah, X Huang, A Vahdat, J Song, Q Zhang, K Kreis, M Aittala, ...
arXiv preprint arXiv:2211.01324, 2022
5052022
Fast sampling of diffusion models with exponential integrator
Q Zhang, Y Chen
International Conference on Learning Representations, 2022
2562022
Diffusion normalizing flow
Q Zhang, Y Chen
Advances in neural information processing systems 34, 16280-16291, 2021
842021
gDDIM: Generalized denoising diffusion implicit models
Q Zhang, M Tao, Y Chen
International Conference on Learning Representations, 2022
792022
Multi-marginal optimal transport and probabilistic graphical models
I Haasler, R Singh, Q Zhang, J Karlsson, Y Chen
IEEE Transactions on Information Theory 67 (7), 4647-4668, 2021
562021
Variational Wasserstein gradient flow
J Fan, Q Zhang, A Taghvaei, Y Chen
ICML, 2021
472021
Path integral sampler: a stochastic control approach for sampling
Q Zhang, Y Chen
International Conference on Learning Representations, 2021
472021
Improving robustness via risk averse distributional reinforcement learning
R Singh, Q Zhang, Y Chen
Learning for Dynamics and Control, 958-968, 2020
452020
DiffCollage: Parallel Generation of Large Content with Diffusion Models
Q Zhang, J Song, X Huang, Y Chen, MY Liu
Conference on Computer Vision and Pattern Recognition, 2023
392023
Inference with aggregate data in probabilistic graphical models: An optimal transport approach
R Singh, I Haasler, Q Zhang, J Karlsson, Y Chen
IEEE Transactions on Automatic Control 67 (9), 4483-4497, 2022
32*2022
Loss-Guided Diffusion Models for Plug-and-Play Controllable Generation
J Song, Q Zhang, H Yin, M Mardani, MY Liu, J Kautz, Y Chen, A Vahdat
International Conference on Machine Learning, 2023
302023
Improved order analysis and design of exponential integrator for diffusion models sampling
Q Zhang, J Song, Y Chen
arXiv preprint arXiv:2308.02157, 2023
92023
Distrifusion: Distributed parallel inference for high-resolution diffusion models
M Li, T Cai, J Cao, Q Zhang, H Cai, J Bai, Y Jia, K Li, S Han
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
72024
An optimal control approach to particle filtering
Q Zhang, A Taghvaei, Y Chen
Automatica 151, 110894, 2023
62023
Incremental inference of collective graphical models
R Singh, I Haasler, Q Zhang, J Karlsson, Y Chen
IEEE Control Systems Letters 5 (2), 421-426, 2020
62020
Inference of aggregate hidden Markov models with continuous observations
Q Zhang, R Singh, Y Chen
IEEE Control Systems Letters 6, 2377-2382, 2022
3*2022
Learning hidden Markov models from aggregate observations
R Singh, Q Zhang, Y Chen
Automatica 137, 110100, 2022
32022
Techniques for denoising diffusion using an ensemble of expert denoisers
Y Balaji, TO Aila, M Aittala, B Catanzaro, X Huang, TT Karras, K Kreis, ...
US Patent App. 18/485,239, 2024
2024
Condition-Aware Neural Network for Controlled Image Generation
H Cai, M Li, Q Zhang, MY Liu, S Han
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
2024
An optimal control approach to particle filtering on Lie groups
B Yuan, Q Zhang, Y Chen
IEEE Control Systems Letters 7, 1195-1200, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–20