关注
Janosch Preuss
Janosch Preuss
在 ucl.ac.uk 的电子邮件经过验证
标题
引用次数
引用次数
年份
Higher order unfitted isoparametric space-time FEM on moving domains
J Preuß
Master's thesis, University of Gottingen, 2018
512018
ngsxfem: Add-on to NGSolve for geometrically unfitted finite element discretizations
C Lehrenfeld, F Heimann, J Preuß, H Von Wahl
Journal of Open Source Software 6 (64), 3237, 2021
252021
Geometrically higher order unfitted space-time methods for PDEs on moving domains
F Heimann, C Lehrenfeld, J Preuß
SIAM Journal on Scientific Computing 45 (2), B139-B165, 2023
112023
Learned infinite elements
T Hohage, C Lehrenfeld, J Preuß
SIAM Journal on Scientific Computing 43 (5), A3552-A3579, 2021
72021
Learned infinite elements for helioseismology
J Preuß
PhD thesis, Georg-August-Universität Göttingen, 2021
22021
Sweeping preconditioners for stratified media in the presence of reflections
J Preuß, T Hohage, C Lehrenfeld
SN Partial Differential Equations and Applications 1, 1-17, 2020
22020
Unique continuation for the Lamé system using stabilized finite element methods
E Burman, J Preuss
GEM-International Journal on Geomathematics 14 (1), 9, 2023
12023
Unique continuation for an elliptic interface problem using unfitted isoparametric finite elements
E Burman, J Preuss
arXiv preprint arXiv:2307.05210, 2023
12023
A hybridized Nitsche method for sign-changing elliptic PDEs
E Burman, A Ern, J Preuss
2024
Unique continuation for the wave equation based on a discontinuous Galerkin time discretization
E Burman, J Preuss
arXiv preprint arXiv:2405.04615, 2024
2024
Learned infinite elements for helioseismology--Learning transparent boundary conditions for the solar atmosphere
D Fournier, J Preuss, T Hohage, L Gizon
arXiv preprint arXiv:2402.08059, 2024
2024
Data assimilation finite element method for the linearized Navier-Stokes equations with higher order polynomial approximation
E Burman, D Garg, J Preuss
ESAIM: Mathematical Modelling and Numerical Analysis 58 (1), 223-245, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–12