Higher order unfitted isoparametric space-time FEM on moving domains J Preuß Master's thesis, University of Gottingen, 2018 | 51 | 2018 |
ngsxfem: Add-on to NGSolve for geometrically unfitted finite element discretizations C Lehrenfeld, F Heimann, J Preuß, H Von Wahl Journal of Open Source Software 6 (64), 3237, 2021 | 25 | 2021 |
Geometrically higher order unfitted space-time methods for PDEs on moving domains F Heimann, C Lehrenfeld, J Preuß SIAM Journal on Scientific Computing 45 (2), B139-B165, 2023 | 11 | 2023 |
Learned infinite elements T Hohage, C Lehrenfeld, J Preuß SIAM Journal on Scientific Computing 43 (5), A3552-A3579, 2021 | 7 | 2021 |
Learned infinite elements for helioseismology J Preuß PhD thesis, Georg-August-Universität Göttingen, 2021 | 2 | 2021 |
Sweeping preconditioners for stratified media in the presence of reflections J Preuß, T Hohage, C Lehrenfeld SN Partial Differential Equations and Applications 1, 1-17, 2020 | 2 | 2020 |
Unique continuation for the Lamé system using stabilized finite element methods E Burman, J Preuss GEM-International Journal on Geomathematics 14 (1), 9, 2023 | 1 | 2023 |
Unique continuation for an elliptic interface problem using unfitted isoparametric finite elements E Burman, J Preuss arXiv preprint arXiv:2307.05210, 2023 | 1 | 2023 |
A hybridized Nitsche method for sign-changing elliptic PDEs E Burman, A Ern, J Preuss | | 2024 |
Unique continuation for the wave equation based on a discontinuous Galerkin time discretization E Burman, J Preuss arXiv preprint arXiv:2405.04615, 2024 | | 2024 |
Learned infinite elements for helioseismology--Learning transparent boundary conditions for the solar atmosphere D Fournier, J Preuss, T Hohage, L Gizon arXiv preprint arXiv:2402.08059, 2024 | | 2024 |
Data assimilation finite element method for the linearized Navier-Stokes equations with higher order polynomial approximation E Burman, D Garg, J Preuss ESAIM: Mathematical Modelling and Numerical Analysis 58 (1), 223-245, 2024 | | 2024 |