关注
Joseph Abbate
Joseph Abbate
在 princeton.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Keras2c: A library for converting Keras neural networks to real-time compatible C
R Conlin, K Erickson, J Abbate, E Kolemen
Engineering Applications of Artificial Intelligence 100, 104182, 2021
482021
Data-driven profile prediction for DIII-D
J Abbate, R Conlin, E Kolemen
Nuclear Fusion 61 (4), 046027, 2021
402021
DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
ME Fenstermacher, J Abbate, S Abe, T Abrams, M Adams, B Adamson, ...
Nuclear Fusion 62 (4), 042024, 2022
222022
Alfvén eigenmode classification based on ECE diagnostics at DIII-D using deep recurrent neural networks
A Jalalvand, AA Kaptanoglu, AV Garcia, AO Nelson, J Abbate, ME Austin, ...
Nuclear Fusion 62 (2), 026007, 2021
222021
Real-time and adaptive reservoir computing with application to profile prediction in fusion plasma
A Jalalvand, J Abbate, R Conlin, G Verdoolaege, E Kolemen
IEEE Transactions on Neural Networks and Learning Systems 33 (6), 2630-2641, 2021
222021
Offline model-based reinforcement learning for tokamak control
I Char, J Abbate, L Bardóczi, M Boyer, Y Chung, R Conlin, K Erickson, ...
Learning for Dynamics and Control Conference, 1357-1372, 2023
192023
Avoiding fusion plasma tearing instability with deep reinforcement learning
J Seo, SK Kim, A Jalalvand, R Conlin, A Rothstein, J Abbate, K Erickson, ...
Nature 626 (8000), 746-751, 2024
142024
Exploration via planning for information about the optimal trajectory
V Mehta, I Char, J Abbate, R Conlin, M Boyer, S Ermon, J Schneider, ...
Advances in Neural Information Processing Systems 35, 28761-28775, 2022
92022
Multimodal prediction of tearing instabilities in a tokamak
J Seo, R Conlin, A Rothstein, SK Kim, J Abbate, A Jalalvand, E Kolemen
2023 International Joint Conference on Neural Networks (IJCNN), 1-8, 2023
72023
A general infrastructure for data-driven control design and implementation in tokamaks
J Abbate, R Conlin, R Shousha, K Erickson, E Kolemen
Journal of Plasma Physics 89 (1), 895890102, 2023
72023
Machine learning-based real-time kinetic profile reconstruction in DIII-D
R Shousha, J Seo, K Erickson, Z Xing, SK Kim, J Abbate, E Kolemen
Nuclear Fusion 64 (2), 026006, 2023
42023
Towards llms as operational copilots for fusion reactors
V Mehta, J Abbate, A Wang, A Rothstein, I Char, J Schneider, E Kolemen, ...
NeurIPS 2023 AI for Science Workshop, 2023
42023
Automated experimental design of safe rampdowns via probabilistic machine learning
V Mehta, J Barr, J Abbate, MD Boyer, I Char, W Neiswanger, E Kolemen, ...
Nuclear Fusion 64 (4), 046014, 2024
22024
Avoiding tokamak tearing instability with artificial intelligence
E Kolemen, J Seo, R Conlin, A Rothstein, SK Kim, J Abbate, K Erickson, ...
22023
Full Shot Predictions for the DIII-D Tokamak via Deep Recurrent Networks
I Char, Y Chung, J Abbate, E Kolemen, J Schneider
arXiv preprint arXiv:2404.12416, 2024
12024
Sample-efficient plasma control by planning for optimal trajectory information
V Mehta, I Char, J Schneider, W Neiswanger, S Ermon, J Abbate, ...
ICML2022 Workshop on Adaptive Experimental Design and Active Learning in the …, 2022
12022
Offline Model-Based Reinforcement Learning for Tokamak Control
I Char, J Abbate, L Bardóczi, MD Boyer, Y Chung, R Conlin, K Erickson, ...
Power (MW) 1500, 2500, 2000
12000
Initial testing of Alfvén Eigenmode feedback control with machine-learning observers on DIII-D
A Rothstein, A Jalalvand, J Abbate, K Erickson, E Kolemen
Nuclear Fusion, 2024
2024
Large-database cross-verification and validation of tokamak transport models using baselines for comparison
J Abbate, E Fable, B Grierson, A Pankin, G Tardini, E Kolemen
Physics of Plasmas 31 (4), 2024
2024
AI-based prediction and control of tokamaks: combining simulations and experimental data
JA Abbate
Princeton University, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20