关注
Qingyu Tan
Qingyu Tan
在 u.nus.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
On the effectiveness of adapter-based tuning for pretrained language model adaptation
R He, L Liu, H Ye, Q Tan, B Ding, L Cheng, JW Low, L Bing, L Si
arXiv preprint arXiv:2106.03164, 2021
1442021
Document-level relation extraction with adaptive focal loss and knowledge distillation
Q Tan, R He, L Bing, HT Ng
arXiv preprint arXiv:2203.10900, 2022
872022
Evolutionary optimization-based mission planning for UAS traffic management (UTM)
Q Tan, Z Wang, YS Ong, KH Low
2019 International Conference on Unmanned Aircraft Systems (ICUAS), 952-958, 2019
632019
Swarm-based 4D path planning for drone operations in urban environments
Y Wu, KH Low, B Pang, Q Tan
IEEE transactions on vehicular technology 70 (8), 7464-7479, 2021
612021
Revisiting DocRED--Addressing the False Negative Problem in Relation Extraction
Q Tan, L Xu, L Bing, HT Ng, SM Aljunied
arXiv preprint arXiv:2205.12696, 2022
502022
Towards benchmarking and improving the temporal reasoning capability of large language models
Q Tan, HT Ng, L Bing
arXiv preprint arXiv:2306.08952, 2023
432023
Feature adaptation of pre-trained language models across languages and domains with robust self-training
H Ye, Q Tan, R He, J Li, HT Ng, L Bing
arXiv preprint arXiv:2009.11538, 2020
412020
SeaLLMs--Large Language Models for Southeast Asia
XP Nguyen, W Zhang, X Li, M Aljunied, Q Tan, L Cheng, G Chen, Y Deng, ...
arXiv preprint arXiv:2312.00738, 2023
262023
A risk-based UAS traffic network model for adaptive urban airspace management
B Pang, Q Tan, T Ra, KH Low
AIAA Aviation 2020 Forum, 2900, 2020
252020
Domain generalization for text classification with memory-based supervised contrastive learning
Q Tan, R He, L Bing, HT Ng
Proceedings of the 29th International Conference on Computational …, 2022
122022
Unlocking temporal question answering for large language models using code execution
X Li, L Cheng, Q Tan, HT Ng, S Joty, L Bing
arXiv preprint arXiv:2305.15014, 2023
102023
Class-adaptive self-training for relation extraction with incompletely annotated training data
Q Tan, L Xu, L Bing, HT Ng
arXiv preprint arXiv:2306.09697, 2023
32023
Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning
Q Tan, HT Ng, L Bing
arXiv preprint arXiv:2311.09821, 2023
22023
系统目前无法执行此操作,请稍后再试。
文章 1–13