Multilabel classification F Herrera, F Charte, AJ Rivera, MJ Del Jesus Multilabel Classification, 17-31, 2016 | 359 | 2016 |
A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines D Charte, F Charte, S García, MJ del Jesus, F Herrera IX Simposio de Teoría y Aplicaciones de la Minería de Datos; XVIII …, 2018 | 337 | 2018 |
A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines D Charte, F Charte, S García, MJ del Jesus, F Herrera Information Fusion 44, 78--96, 2018 | 337 | 2018 |
Addressing imbalance in multilabel classification: Measures and random resampling algorithms F Charte, AJ Rivera, MJ del Jesus, F Herrera Neurocomputing 163, 3-16, 2015 | 276 | 2015 |
MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation F Charte, AJ Rivera, MJ del Jesus, F Herrera Knowledge-Based Systems 89, 385-397, 2015 | 240 | 2015 |
Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications JM Górriz, J Ramírez, A Ortíz, FJ Martínez-Murcia, F Segovia, J Suckling, ... Neurocomputing 410, 237-270, 2020 | 225 | 2020 |
A first approach to deal with imbalance in multi-label datasets F Charte, A Rivera, MJ del Jesus, F Herrera International Conference on Hybrid Artificial Intelligence Systems, 150-160, 2013 | 102 | 2013 |
Working with Multilabel Datasets in R: The mldr Package F Charte, D Charte The R Journal 7 (2), 14, 2015 | 83 | 2015 |
An analysis on the use of autoencoders for representation learning: Fundamentals, learning task case studies, explainability and challenges D Charte, F Charte, MJ del Jesus, F Herrera Neurocomputing 404, 93-107, 2020 | 67 | 2020 |
Is the average photon energy a unique characteristic of the spectral distribution of global irradiance? G Nofuentes, CA Gueymard, J Aguilera, MD Pérez-Godoy, F Charte Solar Energy 149, 32-43, 2017 | 62 | 2017 |
Dealing with difficult minority labels in imbalanced mutilabel data sets F Charte, AJ Rivera, MJ del Jesus, F Herrera Neurocomputing 326, 39-53, 2019 | 59 | 2019 |
MLeNN: a first approach to heuristic multilabel undersampling F Charte, AJ Rivera, MJ del Jesus, F Herrera International Conference on Intelligent Data Engineering and Automated …, 2014 | 58 | 2014 |
Concurrence among imbalanced labels and its influence on multilabel resampling algorithms F Charte, A Rivera, MJ del Jesus, F Herrera International Conference on Hybrid Artificial Intelligence Systems, 110-121, 2014 | 53 | 2014 |
Strategies for time series forecasting with generalized regression neural networks F Martínez, F Charte, MP Frías, AM Martínez-Rodríguez Neurocomputing 491, 509-521, 2022 | 46 | 2022 |
Time Series Forecasting with KNN in R: the tsfknn Package F Martínez, MP Frías, F Charte, AJ Rivera The R Journal 11 (2), 229-242, 2019 | 43 | 2019 |
REMEDIAL-HwR: Tackling multilabel imbalance through label decoupling and data resampling hybridization F Charte, AJ Rivera, MJ del Jesus, F Herrera Neurocomputing 326, 110-122, 2019 | 41 | 2019 |
Choosing the proper autoencoder for feature fusion based on data complexity and classifiers: Analysis, tips and guidelines FJ Pulgar, F Charte, AJ Rivera, MJ del Jesus Information Fusion 54, 44-60, 2020 | 40 | 2020 |
LI-MLC: A Label Inference Methodology for Addressing High Dimensionality in the Label Space for Multilabel Classification F Charte, AJ Rivera, MJ Del Jesus, F Herrera IEEE Transactions on Neural Networks and Learning Systems 25 (10), 1842-1854, 2014 | 39 | 2014 |
QUINTA: a question tagging assistant to improve the answering ratio in electronic forums F Charte, AJ Rivera, MJ del Jesus, F Herrera IEEE EUROCON 2015-International Conference on Computer as a Tool (EUROCON), 1-6, 2015 | 37 | 2015 |
A snapshot on nonstandard supervised learning problems: taxonomy, relationships, problem transformations and algorithm adaptations D Charte, F Charte, S García, F Herrera Progress in Artificial Intelligence, 1-14, 2018 | 36 | 2018 |