Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte JY Luo, WJ Cui, P He, YY Xia Nature chemistry 2 (9), 760-765, 2010 | 955 | 2010 |
Constructing a super‐saturated electrolyte front surface for stable rechargeable aqueous zinc batteries H Yang, Z Chang, Y Qiao, H Deng, X Mu, P He, H Zhou Angewandte Chemie 132 (24), 9463-9467, 2020 | 606 | 2020 |
Nano active materials for lithium-ion batteries Y Wang, H Li, P He, E Hosono, H Zhou Nanoscale 2 (8), 1294-1305, 2010 | 593 | 2010 |
Core–shell‐structured CNT@ RuO2 composite as a high‐performance cathode catalyst for rechargeable Li–O2 batteries Z Jian, P Liu, F Li, P He, X Guo, M Chen, H Zhou Angewandte Chemie International Edition 53 (2), 442-446, 2014 | 581 | 2014 |
Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries P He, H Yu, H Zhou Journal of Materials Chemistry 22 (9), 3680-3695, 2012 | 510 | 2012 |
Preparation of mesocellular carbon foam and its application for lithium/oxygen battery X Yang, P He, Y Xia Electrochemistry Communications 11 (6), 1127-1130, 2009 | 426 | 2009 |
Olivine LiFePO 4: development and future Y Wang, P He, H Zhou Energy & Environmental Science 4 (3), 805-817, 2011 | 408 | 2011 |
Critical Challenges in Rechargeable Aprotic Li–O2 Batteries N Feng, P He, H Zhou Advanced Energy Materials 6 (9), 1502303, 2016 | 407 | 2016 |
Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage Y Qiao, J Yi, S Wu, Y Liu, S Yang, P He, H Zhou Joule 1 (2), 359-370, 2017 | 354 | 2017 |
Direct Visualization of the Reversible O2−/O− Redox Process in Li‐Rich Cathode Materials X Li, Y Qiao, S Guo, Z Xu, H Zhu, X Zhang, Y Yuan, P He, M Ishida, ... Advanced Materials 30 (14), 1705197, 2018 | 345 | 2018 |
Lithium metal extraction from seawater S Yang, F Zhang, H Ding, P He, H Zhou Joule 2 (9), 1648-1651, 2018 | 323 | 2018 |
A reversible lithium–CO 2 battery with Ru nanoparticles as a cathode catalyst S Yang, Y Qiao, P He, Y Liu, Z Cheng, J Zhu, H Zhou Energy & Environmental Science 10 (4), 972-978, 2017 | 320 | 2017 |
Rechargeable solid‐state Li–Air and Li–S batteries: materials, construction, and challenges Y Liu, P He, H Zhou Advanced Energy Materials 8 (4), 1701602, 2018 | 312 | 2018 |
High-energy ‘composite’layered manganese-rich cathode materials via controlling Li 2 MnO 3 phase activation for lithium-ion batteries H Yu, H Kim, Y Wang, P He, D Asakura, Y Nakamura, H Zhou Physical Chemistry Chemical Physics 14 (18), 6584-6595, 2012 | 312 | 2012 |
Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives W Zhao, J Yi, P He, H Zhou Electrochemical energy reviews 2, 574-605, 2019 | 301 | 2019 |
A metal–organic framework as a multifunctional ionic sieve membrane for long‐life aqueous zinc–iodide batteries H Yang, Y Qiao, Z Chang, H Deng, P He, H Zhou Advanced Materials 32 (38), 2004240, 2020 | 285 | 2020 |
Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF‐based membrane in Li–S batteries Y He, Z Chang, S Wu, Y Qiao, S Bai, K Jiang, P He, H Zhou Advanced Energy Materials 8 (34), 1802130, 2018 | 270 | 2018 |
Germanium thin film protected lithium aluminum germanium phosphate for solid‐state Li batteries Y Liu, C Li, B Li, H Song, Z Cheng, M Chen, P He, H Zhou Advanced energy materials 8 (16), 1702374, 2018 | 251 | 2018 |
Li–CO2 and Na–CO2 Batteries: Toward Greener and Sustainable Electrical Energy Storage X Mu, H Pan, P He, H Zhou Advanced Materials 32 (27), 1903790, 2020 | 242 | 2020 |
A self-defense redox mediator for efficient lithium–O 2 batteries T Zhang, K Liao, P He, H Zhou Energy & Environmental Science 9 (3), 1024-1030, 2016 | 242 | 2016 |