Review on computational methods for Lyapunov functions P Giesl, S Hafstein Discrete and Continuous Dynamical Systems-B 20 (8), 2291-2331, 2015 | 286 | 2015 |
Construction of global Lyapunov functions using radial basis functions P Giesl Springer 1904 (190), 2007 | 177 | 2007 |
Meshless collocation: Error estimates with application to dynamical systems P Giesl, H Wendland SIAM Journal on Numerical Analysis 45 (4), 1723-1741, 2007 | 104 | 2007 |
Revised CPA method to compute Lyapunov functions for nonlinear systems PA Giesl, SF Hafstein Journal of Mathematical Analysis and Applications 410 (1), 292-306, 2014 | 81 | 2014 |
Computation and verification of Lyapunov functions P Giesl, S Hafstein SIAM Journal on Applied Dynamical Systems 14 (4), 1663-1698, 2015 | 58 | 2015 |
Computation of Lyapunov functions for nonlinear discrete time systems by linear programming P Giesl, S Hafstein Journal of Difference Equations and Applications 20 (4), 610-640, 2014 | 51 | 2014 |
Approximation of Lyapunov functions from noisy data P Giesl, B Hamzi, M Rasmussen, KN Webster arXiv preprint arXiv:1601.01568, 2016 | 46 | 2016 |
Construction of a local and global Lyapunov function using radial basis functions P Giesl IMA journal of applied mathematics 73 (5), 782-802, 2008 | 44 | 2008 |
Construction of Lyapunov functions for nonlinear planar systems by linear programming P Giesl, S Hafstein Journal of Mathematical Analysis and Applications 388 (1), 463-479, 2012 | 38 | 2012 |
Construction of a CPA contraction metric for periodic orbits using semidefinite optimization P Giesl, S Hafstein Nonlinear Analysis: Theory, Methods & Applications 86, 114-134, 2013 | 36 | 2013 |
On the determination of the basin of attraction of discrete dynamical systems P Giesl Journal of Difference Equations and Applications 13 (6), 523-546, 2007 | 35 | 2007 |
Computation of Lyapunov functions for systems with multiple local attractors J Björnsson, P Giesl, SF Hafstein, CM Kellett Discrete and Continuous Dynamical Systems 35, 2015 | 34 | 2015 |
Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction J Björnsson, P Giesl, S Hafstein, CM Kellett, H Li 53rd IEEE Conference on Decision and Control, 5506-5511, 2014 | 34 | 2014 |
Converse theorems on contraction metrics for an equilibrium P Giesl Journal of Mathematical Analysis and Applications 424 (2), 1380-1403, 2015 | 32 | 2015 |
Necessary conditions for a limit cycle and its basin of attraction P Giesl Nonlinear Analysis: Theory, Methods & Applications 56 (5), 643-677, 2004 | 30 | 2004 |
Existence of piecewise linear Lyapunov functions in arbitrary dimensions P Giesl, S Hafstein Discrete Contin. Dyn. Syst 32 (10), 3539-3565, 2012 | 26 | 2012 |
Areas of attraction for nonautonomous differential equations on finite time intervals P Giesl, M Rasmussen Journal of Mathematical Analysis and Applications 390 (1), 27-46, 2012 | 25 | 2012 |
Existence of piecewise affine Lyapunov functions in two dimensions P Giesl, S Hafstein Journal of Mathematical Analysis and Applications 371 (1), 233-248, 2010 | 25 | 2010 |
Analysing dynamical systems towards computing complete Lyapunov functions C Argáez, P Giesl, S Hafstein University of Sussex, 2017 | 24 | 2017 |
Computational approach for complete Lyapunov functions C Argáez, P Giesl, SF Hafstein Dynamical Systems in Theoretical Perspective: Łódź, Poland December 11–14 …, 2018 | 23 | 2018 |