关注
Erwan Lecarpentier
Erwan Lecarpentier
PhD in Computer Science
在 isae-supaero.fr 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Non-Stationary Markov Decision Processes, a Worst-Case Approach using Model-Based Reinforcement Learning
E Lecarpentier, E Rachelson
Advances in Neural Information Processing Systems (NeurIPS) 32, 7216--7225, 2019
882019
Lipschitz lifelong reinforcement learning
E Lecarpentier, D Abel, K Asadi, Y Jinnai, E Rachelson, ML Littman
AAAI Conference on Artificial Intelligence, AAAI 2021, 2020
362020
Open loop execution of tree-search algorithms
E Lecarpentier, G Infantes, C Lesire, E Rachelson
International Joint Conference on Artificial Intelligence, IJCAI 2018, 2362 …, 2018
16*2018
Empirical evaluation of a Q-Learning Algorithm for Model-free Autonomous Soaring
E Lecarpentier, S Rapp, M Melo, E Rachelson
arXiv preprint arXiv:1707.05668, 2017
42017
Reinforcement Learning in Non-Stationary Environments
E Lecarpentier
Institut Supérieur de l'Aéronautique et de l'Espace (ISAE), 2020
32020
DARTS-PRIME: Regularization and scheduling improve constrained optimization in differentiable NAS
K Maile, E Lecarpentier, H Luga, DG Wilson
arXiv preprint arXiv:2106.11655, 2021
22021
LUCIE: an evaluation and selection method for stochastic problems
E Lecarpentier, P Templier, E Rachelson, DG Wilson
Proceedings of the Genetic and Evolutionary Computation Conference, 730-738, 2022
12022
On constrained optimization in differentiable neural architecture search
K Maile, E Lecarpentier, H Luga, DG Wilson
CoRR, 2021
12021
LUCIE: An Evaluation and Selection Method for Stochastic Problems–Appendix
E LECARPENTIER, P TEMPLIER, E RACHELSON, DG WILSON
2022
Processus décisionnels de Markov non-stationnaires une approche pire-cas utilisant l’apprentissage par renforcement basé modèle
E Lecarpentier, E Rachelson
JFPDA, 105, 0
系统目前无法执行此操作,请稍后再试。
文章 1–10