Light field image processing: An overview G Wu, B Masia, A Jarabo, Y Zhang, L Wang, Q Dai, T Chai, Y Liu IEEE Journal of Selected Topics in Signal Processing 11 (7), 926-954, 2017 | 568 | 2017 |
Light field reconstruction using deep convolutional network on EPI G Wu, M Zhao, L Wang, Q Dai, T Chai, Y Liu Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017 | 227 | 2017 |
Disentangling light fields for super-resolution and disparity estimation Y Wang, L Wang, G Wu, J Yang, W An, J Yu, Y Guo IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (1), 425-443, 2022 | 156 | 2022 |
Light field reconstruction using convolutional network on EPI and extended applications G Wu, Y Liu, L Fang, Q Dai, T Chai IEEE transactions on pattern analysis and machine intelligence 41 (7), 1681-1694, 2018 | 125 | 2018 |
Learning sheared EPI structure for light field reconstruction G Wu, Y Liu, Q Dai, T Chai IEEE Transactions on Image Processing 28 (7), 3261-3273, 2019 | 114 | 2019 |
Revisiting light field rendering with deep anti-aliasing neural network G Wu, Y Liu, L Fang, T Chai IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (9), 5430-5444, 2021 | 62* | 2021 |
Spatial-angular attention network for light field reconstruction G Wu, Y Wang, Y Liu, L Fang, T Chai IEEE Transactions on Image Processing 30, 8999-9013, 2021 | 41 | 2021 |
LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution Homography Estimation R Shao, G Wu, Y Zhou, Y Fu, L Fang, Y Liu Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021 | 36 | 2021 |
Cross-MPI: Cross-scale stereo for image superresolution using multiplane images Y Zhou, G Wu, Y Fu, K Li, Y Liu Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | 27 | 2021 |
Cross-scale reference-based light field super-resolution M Zhao, G Wu, Y Li, X Hao, L Fang, Y Liu IEEE Transactions on Computational Imaging 4 (3), 406-418, 2018 | 26 | 2018 |
Real time power equipment meter recognition based on deep learning Z Fan, L Shi, C Xi, H Wang, S Wang, G Wu IEEE Transactions on Instrumentation and Measurement 71, 1-15, 2022 | 25 | 2022 |
Data mining based noise diagnosis and fuzzy filter design for image processing Y Wang, G Wu, GS Chen, T Chai Computers & Electrical Engineering 40 (7), 2038-2049, 2014 | 13 | 2014 |
基于时序图像深度学习的电熔镁炉异常工况诊断 吴高昌, 刘强, 柴天佑, 秦泗钊 自动化学报 45 (8), 1475-1485, 2019 | 12 | 2019 |
Lfnat 2023 challenge on light field depth estimation: Methods and results H Sheng, Y Liu, J Yu, G Wu, W Xiong, R Cong, R Chen, L Guo, Y Xie, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 10 | 2023 |
Disturbance robust abnormality diagnosis of fused magnesium furnaces using deep neural networks Q Liu, Y Zhang, G Wu, Z Fan IEEE Transactions on Artificial Intelligence 4 (4), 669-678, 2022 | 8 | 2022 |
Joint view synthesis and disparity refinement for stereo matching G Wu, Y Li, Y Huang, Y Liu Frontiers of Computer Science 13, 1337-1352, 2019 | 6 | 2019 |
Modeling and control for PEMFC hydrogen management subsystem based on neural network compensation and prescribed tracking accuracy Y Wang, G Wu, Y Wang Fuel 352, 129019, 2023 | 3 | 2023 |
Boosting single image super-resolution learnt from implicit multi-image prior D Jin, M Ji, L Xu, G Wu, L Wang, L Fang IEEE Transactions on Image Processing 30, 3240-3251, 2021 | 3 | 2021 |
How depth estimation in light fields can benefit from super-resolution? M Zhao, G Wu, Y Liu, X Hao International Journal of Advanced Robotic Systems 15 (1), 1729881417748446, 2018 | 3* | 2018 |
利用卷积神经网络的高光谱图像分类 赵漫丹, 任治全, 吴高昌, 郝向阳 测绘科学技术学报 34 (5), 501-507, 2017 | 2 | 2017 |