关注
Lukas Muttenthaler
Lukas Muttenthaler
TU Berlin & Google DeepMind
在 tu-berlin.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Human alignment of neural network representations
L Muttenthaler, J Dippel, L Linhardt, RA Vandermeulen, S Kornblith
International Conference on Learning Representations (ICLR) 11, 2023
442023
THINGSvision: A Python Toolbox for Streamlining the Extraction of Activations From Deep Neural Networks
L Muttenthaler, MN Hebart
Frontiers in Neuroinformatics 15, 45, 2021
382021
Getting aligned on representational alignment
I Sucholutsky*, L Muttenthaler*, A Weller, A Peng, A Bobu, B Kim, ...
arXiv preprint arXiv:2310.13018, 2023
36*2023
Authorship Attribution in Fan-Fictional Texts given variable length Character and Word N-Grams
L Muttenthaler, G Lucas, J Amann
CEUR Workshop Proceedings, 2019
27*2019
Improving neural network representations using human similarity judgments
L Muttenthaler, L Linhardt, J Dippel, RA Vandermeulen, K Hermann, ...
Advances in Neural Information Processing Systems (NeurIPS) 36, 2023
202023
Assisted declarative process creation from natural language descriptions
HA López, M Marquard, L Muttenthaler, R Strømsted
2019 IEEE 23rd International Enterprise Distributed Object Computing …, 2019
192019
VICE: Variational Interpretable Concept Embeddings
L Muttenthaler, CY Zheng, P McClure, RA Vandermeulen, MN Hebart, ...
Advances in Neural Information Processing Systems (NeurIPS) 35, 2022
182022
Human brain activity for machine attention
L Muttenthaler, N Hollenstein, M Barrett
arXiv preprint arXiv:2006.05113, 2020
172020
Unsupervised Evaluation for Question Answering with Transformers
L Muttenthaler, I Augenstein, J Bjerva
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting …, 2020
52020
Subjective Question Answering: Deciphering the inner workings of Transformers in the realm of subjectivity
L Muttenthaler
arXiv preprint arXiv:2006.08342, 2020
22020
Dimensions underlying the representational alignment of deep neural networks with humans
FP Mahner*, L Muttenthaler*, U Güçlü, MN Hebart
arXiv preprint arXiv:2406.19087, 2024
12024
Set Learning for Accurate and Calibrated Models
L Muttenthaler*, RA Vandermeulen*, Q Zhang, T Unterthiner, KR Müller
International Conference on Learning Representations (ICLR) 12, 2024
12024
Interpretable object dimensions in deep neural networks and their similarities to human representations
L Muttenthaler, MN Hebart
Oral @ 22nd Annual Meeting of the Vision Sciences Society (VSS 2022) 22 (14 …, 2022
12022
A Novel Test of Pure Irrelevance-Induced Blindness
C Büsel, T Ditye, L Muttenthaler, U Ansorge
Frontiers in Psychology 10, 375, 2019
12019
Evaluating and supervising vision models with multi-level similarity judgments
F Born*, L Muttenthaler*, K Greff, T Unterthiner, AK Lampinen, KR Müller, ...
Conference on Cognitive Computational Neuroscience (CCN 2024), 2024
2024
First Workshop on Representational Alignment (Re-Align)
E Grant, I Sucholutsky, J Achterberg, K Hermann, L Muttenthaler
ICLR 2024 Workshops, 2024
2024
Dimensions That Matter – Interpretable Object Dimensions in Humans and Deep Neural Networks
FP Mahner*, L Muttenthaler*, U Güçlü, MN Hebart
Conference on Cognitive Computational Neuroscience (CCN 2023), 2023
2023
Effective enhancement of attentional functions in the amblyopic brain
L Muttenthaler
Journal of European Psychology Students 10 (1), 1-10, 2019
2019
Compositional Skills of Recurrent Neural Networks
L Muttenthaler
系统目前无法执行此操作,请稍后再试。
文章 1–19