关注
Marco Eckhoff
Marco Eckhoff
在 phys.chem.ethz.ch 的电子邮件经过验证
标题
引用次数
引用次数
年份
From molecular fragments to the bulk: Development of a neural network potential for MOF-5
M Eckhoff, J Behler
Journal of chemical theory and computation 15 (6), 3793-3809, 2019
962019
High-dimensional neural network potentials for magnetic systems using spin-dependent atom-centered symmetry functions
M Eckhoff, J Behler
npj Computational Materials 7 (1), 170, 2021
472021
Closing the gap between theory and experiment for lithium manganese oxide spinels using a high-dimensional neural network potential
M Eckhoff, F Schönewald, M Risch, CA Volkert, PE Blöchl, J Behler
Physical Review B 102 (17), 174102, 2020
282020
Predicting oxidation and spin states by high-dimensional neural networks: Applications to lithium manganese oxide spinels
M Eckhoff, KN Lausch, PE Blöchl, J Behler
The Journal of Chemical Physics 153 (16), 2020
282020
Insights into lithium manganese oxide-water interfaces using machine learning potentials
M Eckhoff, J Behler
The Journal of Chemical Physics 155 (24), 244703, 2021
242021
Strained hydrogen bonding in imidazole trimer: A combined infrared, Raman, and theory study
T Forsting, J Zischang, MA Suhm, M Eckhoff, B Schröder, RA Mata
Physical Chemistry Chemical Physics 21 (11), 5989-5998, 2019
182019
Hybrid density functional theory benchmark study on lithium manganese oxides
M Eckhoff, PE Blöchl, J Behler
Physical Review B 101 (20), 205113, 2020
152020
Lifelong machine learning potentials
M Eckhoff, M Reiher
Journal of Chemical Theory and Computation 19 (12), 3509-3525, 2023
142023
The Guinness molecules for the carbohydrate formula
J Altnoeder, K Krueger, D Borodin, L Reuter, D Rohleder, F Hecker, ...
The Chemical Record 14 (6), 1116-1133, 2014
102014
Structure and thermodynamics of metal clusters on atomically smooth substrates
M Eckhoff, D Schebarchov, DJ Wales
The Journal of Physical Chemistry Letters 8 (21), 5402-5407, 2017
82017
A full additive QM/MM scheme for the computation of molecular crystals with extension to many-body expansions
TL Teuteberg, M Eckhoff, RA Mata
The Journal of Chemical Physics 150 (15), 2019
62019
A criticial view on e occupancy as a descriptor for oxygen evolution catalytic activity in LiMnO nanoparticles
F Schönewald, M Eckhoff, M Baumung, M Risch, PE Blöchl, J Behler, ...
arXiv preprint arXiv:2007.04217, 2020
42020
ReiherGroup/CoRe_optimizer: Release 1.0. 0
M Eckhoff, M Reiher
12024
SCINE—Software for chemical interaction networks
T Weymuth, JP Unsleber, PL Türtscher, M Steiner, JG Sobez, CH Müller, ...
The Journal of Chemical Physics 160 (22), 2024
2024
CoRe optimizer: an all-in-one solution for machine learning
M Eckhoff, M Reiher
Machine Learning: Science and Technology 5 (1), 015018, 2024
2024
Investigation of Lithium Manganese Oxides Using High-Dimensional Neural Networks
M Eckhoff
Georg-August-Universität Göttingen, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–16