Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models B Horvath, A Muguruza, M Tomas Quantitative Finance 21 (1), 11-27, 2021 | 135 | 2021 |
On deep calibration of (rough) stochastic volatility models C Bayer, B Horvath, A Muguruza, B Stemper, M Tomas arXiv preprint arXiv:1908.08806, 2019 | 95 | 2019 |
Deep learning volatility B Horvath, A Muguruza, M Tomas arXiv preprint arXiv:1901.09647, 2019 | 83 | 2019 |
Short-time near-the-money skew in rough fractional volatility models C Bayer, PK Friz, A Gulisashvili, B Horvath, B Stemper Quantitative Finance 19 (5), 779-798, 2019 | 82 | 2019 |
A data-driven market simulator for small data environments H Buehler, B Horvath, T Lyons, IP Arribas, B Wood arXiv preprint arXiv:2006.14498, 2020 | 75 | 2020 |
Volatility options in rough volatility models B Horvath, A Jacquier, P Tankov SIAM Journal on Financial Mathematics 11 (2), 437-469, 2020 | 63 | 2020 |
Functional central limit theorems for rough volatility B Horvath, A Jacquier, A Muguruza, A Søjmark Finance and Stochastics, 1-47, 2024 | 56 | 2024 |
Deep hedging under rough volatility B Horvath, J Teichmann, Ž Žurič Risks 9 (7), 138, 2021 | 35 | 2021 |
Higher order kernel mean embeddings to capture filtrations of stochastic processes C Salvi, M Lemercier, C Liu, B Horvath, T Damoulas, T Lyons Advances in Neural Information Processing Systems 34, 16635-16647, 2021 | 31 | 2021 |
Generating financial markets with signatures H Buehler, B Horvath, T Lyons, I Perez Arribas, B Wood Available at SSRN 3657366, 2020 | 24 | 2020 |
Asymptotic behaviour of randomised fractional volatility models B Horvath, A Jacquier, C Lacombe Journal of Applied Probability 56 (2), 496-523, 2019 | 23 | 2019 |
Mass at zero in the uncorrelated SABR model and implied volatility asymptotics A Gulisashvili, B Horvath, A Jacquier Quantitative Finance 18 (10), 1753-1765, 2018 | 17 | 2018 |
Analytic option prices for the Black-Karasinski short rate model B Horvath, AJ Jacquier, C Turfus Available at SSRN 3253833, 2018 | 13 | 2018 |
Dirichlet forms and finite element methods for the SABR model B Horvath, O Reichmann SIAM Journal on Financial Mathematics 9 (2), 716-754, 2018 | 13 | 2018 |
Non-adversarial training of Neural SDEs with signature kernel scores Z Issa, B Horvath, M Lemercier, C Salvi Advances in Neural Information Processing Systems 36, 2024 | 12 | 2024 |
On the probability of hitting the boundary for Brownian motions on the SABR plane A Gulisashvili, B Horvath, A Jacquier | 12 | 2016 |
Clustering market regimes using the wasserstein distance B Horvath, Z Issa, A Muguruza arXiv preprint arXiv:2110.11848, 2021 | 11 | 2021 |
Hedging under rough volatility M Fukasawa, B Horvath, P Tankov arXiv preprint arXiv:2105.04073, 2021 | 10 | 2021 |
Optimal stopping via distribution regression: a higher rank signature approach B Horvath, M Lemercier, C Liu, T Lyons, C Salvi arXiv preprint arXiv:2304.01479, 2023 | 9 | 2023 |
Data anonymisation, outlier detection and fighting overfitting with restricted Boltzmann machines A Kondratyev, C Schwarz, B Horvath Outlier Detection and Fighting Overfitting with Restricted Boltzmann …, 2020 | 9 | 2020 |