关注
Sowmya Chandrasekaran
Sowmya Chandrasekaran
Technische Hochschule Köln
在 th-koeln.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Benchmarking in optimization: Best practice and open issues
T Bartz-Beielstein, C Doerr, D Berg, J Bossek, S Chandrasekaran, ...
arXiv preprint arXiv:2007.03488, 2020
1252020
Data preprocessing: A new algorithm for univariate imputation designed specifically for industrial needs
S Chandrasekaran, M Zaefferer, S Moritz, J Stork, M Friese, A Fischbach, ...
162016
Benchmarking in optimization: best practice and open issues. CoRR abs/2007.03488 (2020)
T Bartz-Beielstein, C Doerr, J Bossek, S Chandrasekaran, T Eftimov, ...
arXiv preprint arXiv:2007.03488, 2020
112020
GECCO Industrial Challenge 2018 Dataset: A water quality dataset for the ‘Internet of Things: Online Anomaly Detection for Drinking Water Quality’competition at the Genetic and …
S Moritz, F Rehbach, S Chandrasekaran, M Rebolledo, T Bartz-Beielstein
Kyoto, Japan, 2018
112018
GECCO 2018 Industrial Challenge: Monitoring of drinking-water quality
F Rehbach, S Moritz, S Chandrasekaran, M Rebolledo, M Friese, ...
Accessed: Feb 19, 2019, 2018
82018
NLP based anomaly detection for categorical time series
M Horak, S Chandrasekaran, G Tobar
2022 IEEE 23rd International Conference on Information Reuse and Integration …, 2022
52022
Gecco 2017 industrial challenge: Monitoring of drinking water quality
S Chandrasekaran, M Freise, J Stork, M Rebolledo, T Bartz-Beielstein
52017
Benchmarking in optimization: Best practice and open issues. NY, USA: Cornell University; 2020. 50 p
T Bartz-Beielstein, C Doerr, J Bossek, S Chandrasekaran, T Eftimov, ...
5
Benchmarking in optimization: Best practice and open issues. arXiv 2020
T Bartz-Beielstein, C Doerr, D Berg, J Bossek, S Chandrasekaran, ...
arXiv preprint arXiv:2007.03488, 0
4
Case study II: tuning of gradient boosting (xgboost)
T Bartz-Beielstein, S Chandrasekaran, F Rehbach
Hyperparameter Tuning for Machine and Deep Learning with R: A Practical …, 2023
32023
Case study iii: Tuning of deep neural networks
T Bartz-Beielstein, S Chandrasekaran, F Rehbach
Hyperparameter Tuning for Machine and Deep Learning with R: A Practical …, 2023
32023
Technical Report: Flushing Strategies in Drinking Water Systems
M Rebolledo, S Chandrasekaran, T Bartz-Beielstein
arXiv preprint arXiv:2012.13574, 2020
32020
Ranking and result aggregation
T Bartz-Beielstein, O Mersmann, S Chandrasekaran
Hyperparameter Tuning for Machine and Deep Learning with R: A Practical …, 2023
22023
EventDetectR--An Open-Source Event Detection System
S Chandrasekaran, M Rebolledo, T Bartz-Beielstein
arXiv preprint arXiv:2011.09833, 2020
22020
Sensor placement for contamination detection in water distribution systems
M Rebolledo, S Chandrasekaran, T Bartz-Beielstein
arXiv preprint arXiv:2011.06406, 2020
22020
A Robust Statistical Framework for the Analysis of the Performances of Stochastic Optimization Algorithms Using the Principles of Severity
S Chandrasekaran, T Bartz-Beielstein
International Conference on the Applications of Evolutionary Computation …, 2023
12023
Case Study I: Tuning Random Forest (Ranger)
T Bartz-Beielstein, S Chandrasekaran, F Rehbach, M Zaefferer
Hyperparameter Tuning for Machine and Deep Learning with R: A Practical …, 2023
12023
Case Study IV: Tuned Reinforcement Learning (in Python)
M Zaefferer, S Chandrasekaran
Hyperparameter Tuning for Machine and Deep Learning with R: A Practical …, 2023
12023
A Novel Ranking Scheme for the Performance Analysis of Stochastic Optimization Algorithms using the Principles of Severity
S Chandrasekaran, T Bartz-Beielstein
arXiv preprint arXiv:2406.00154, 2024
2024
Benchmarking: Best Practices and Open Issues
T Bartz-Beielstein, C Doerr, J Bossek, S Chandrasekaran, T Eftimov, ...
2020
系统目前无法执行此操作,请稍后再试。
文章 1–20