Towards better evaluation for dynamic link prediction F Poursafaei, S Huang, K Pelrine, R Rabbany Advances in Neural Information Processing Systems 35, 32928-32941, 2022 | 60 | 2022 |
Laplacian change point detection for dynamic graphs S Huang, Y Hitti, G Rabusseau, R Rabbany Proceedings of the 26th ACM SIGKDD International Conference on Knowledge …, 2020 | 47 | 2020 |
Temporal graph benchmark for machine learning on temporal graphs S Huang, F Poursafaei, J Danovitch, M Fey, W Hu, E Rossi, J Leskovec, ... Advances in Neural Information Processing Systems 36, 2024 | 42 | 2024 |
Incorporating dynamic flight network in SEIR to model mobility between populations X Ding, S Huang, A Leung, R Rabbany Applied Network Science 6 (1), 42, 2021 | 19 | 2021 |
Neural architecture search for class-incremental learning S Huang, V François-Lavet, G Rabusseau arXiv preprint arXiv:1909.06686, 2019 | 14 | 2019 |
Towards foundational models for molecular learning on large-scale multi-task datasets D Beaini, S Huang, JA Cunha, G Moisescu-Pareja, O Dymov, ... arXiv preprint arXiv:2310.04292, 2023 | 10 | 2023 |
RandomNet: Towards fully automatic neural architecture design for multimodal learning S Alletto, S Huang, V Francois-Lavet, Y Nakata, G Rabusseau arXiv preprint arXiv:2003.01181, 2020 | 8 | 2020 |
Contact graph epidemic modelling of covid-19 for transmission and intervention strategies A Leung, X Ding, S Huang, R Rabbany arXiv preprint arXiv:2010.03081, 2020 | 7 | 2020 |
Fast and attributed change detection on dynamic graphs with density of states S Huang, J Danovitch, G Rabusseau, R Rabbany Pacific-Asia Conference on Knowledge Discovery and Data Mining, 15-26, 2023 | 5 | 2023 |
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction D Masters, J Dean, K Klaser, Z Li, S Maddrell-Mander, A Sanders, H Helal, ... arXiv preprint arXiv:2302.02947, 2023 | 4 | 2023 |
Understanding Capacity Saturation in Incremental Learning. S Huang, V Francois-Lavet, G Rabusseau Canadian Conference on AI, 2021 | 4 | 2021 |
Laplacian Change Point Detection for Single and Multi-view Dynamic Graphs S Huang, S Coulombe, Y Hitti, R Rabbany, G Rabusseau ACM Transactions on Knowledge Discovery from Data 18 (3), 1-32, 2024 | 3 | 2024 |
Towards Temporal Edge Regression: A Case Study on Agriculture Trade Between Nations L Jiang, C Zhang, F Poursafaei, S Huang arXiv preprint arXiv:2308.07883, 2023 | 2 | 2023 |
Graphpulse: Topological representations for temporal graph property prediction K Shamsi, F Poursafaei, S Huang, BTG Ngo, B Coskunuzer, CG Akcora The Twelfth International Conference on Learning Representations, 2023 | 1 | 2023 |
Few Shot Image Generation via Implicit Autoencoding of Support Sets A Huang, KC Wang, G Rabusseau, A Makhzani Fifth Workshop on Meta-Learning at the Conference on Neural Information …, 2021 | 1 | 2021 |
Towards Neural Scaling Laws for Foundation Models on Temporal Graphs R Shirzadkhani, TGB Ngo, K Shamsi, S Huang, F Poursafaei, P Azad, ... arXiv preprint arXiv:2406.10426, 2024 | | 2024 |
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs J Gastinger, S Huang, M Galkin, E Loghmani, A Parviz, F Poursafaei, ... arXiv preprint arXiv:2406.09639, 2024 | | 2024 |
Temporal Graph Rewiring with Expander Graphs K Petrović, S Huang, F Poursafaei, P Veličković arXiv preprint arXiv:2406.02362, 2024 | | 2024 |
Static graph approximations of dynamic contact networks for epidemic forecasting R Shirzadkhani, S Huang, A Leung, R Rabbany Scientific Reports 14 (1), 11696, 2024 | | 2024 |
: A Parameter-Efficient Foundation Model for Molecular Learning K Kläser, B Banaszewski, S Maddrell-Mander, C McLean, L Müller, ... arXiv preprint arXiv:2404.14986, 2024 | | 2024 |