Multi-fidelity regression using artificial neural networks: Efficient approximation of parameter-dependent output quantities M Guo, A Manzoni, M Amendt, P Conti, JS Hesthaven Computer methods in applied mechanics and engineering 389, 114378, 2022 | 79 | 2022 |
Multi-fidelity surrogate modeling using long short-term memory networks P Conti, M Guo, A Manzoni, JS Hesthaven Computer methods in applied mechanics and engineering 404, 115811, 2023 | 33 | 2023 |
Reduced order modeling of parametrized systems through autoencoders and SINDy approach: continuation of periodic solutions P Conti, G Gobat, S Fresca, A Manzoni, A Frangi Computer Methods in Applied Mechanics and Engineering 411, 116072, 2023 | 25 | 2023 |
Multi-fidelity reduced-order surrogate modelling P Conti, M Guo, A Manzoni, A Frangi, SL Brunton, J Nathan Kutz Proceedings of the Royal Society A 480 (2283), 20230655, 2024 | 5 | 2024 |
EKF-SINDy: Empowering the extended Kalman filter with sparse identification of nonlinear dynamics L Rosafalco, P Conti, A Manzoni, S Mariani, A Frangi arXiv preprint arXiv:2404.07536, 2024 | 1 | 2024 |
VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification P Conti, J Kneifl, A Manzoni, A Frangi, J Fehr, SL Brunton, JN Kutz arXiv preprint arXiv:2405.20905, 2024 | | 2024 |