关注
Nandor Simanyi
Nandor Simanyi
Professor of Mathematics, University of Alabama at Birmingham
在 uab.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A “transversal” fundamental theorem for semi-dispersing billiards
A Krámli, N Simányi, D Szász
Communications in mathematical physics 129 (3), 535-560, 1990
1321990
Decay of correlations for Lorentz gases and hard balls
LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ...
Hard ball systems and the Lorentz gas, 89-120, 2000
1032000
Dual polygonal billiards and necklace dynamics
E Gutkin, N Simányi
Communications in mathematical physics 143, 431-449, 1992
951992
The K-property of three billiard balls
A Krámli, N Simanyi, D Szasz
Annals of Mathematics, 37-72, 1991
811991
Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems
N Simányi
Inventiones Mathematicae 154, 123-178, 2003
672003
Hard ball systems are completely hyperbolic
N Simányi, D Szász
Annals of Mathematics, 35-96, 1999
661999
TheK-property of four billiard balls
A Krámli, N Simanyi, D Szasz
Communications in mathematical physics 144 (1), 107-148, 1992
631992
Proof of the ergodic hypothesis for typical hard ball systems
N Simányi
Annales Henri Poincaré 5 (2), 203-233, 2004
592004
The K-property ofN billiard balls I
N Simányi
Inventiones mathematicae 108 (1), 521-548, 1992
581992
Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus
A Krámli, N Simányi, D Szász
Nonlinearity 2 (2), 311, 1989
561989
Boltzmann’s ergodic hypothesis, a conjecture for centuries?
LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ...
Hard ball systems and the Lorentz gas, 421-446, 2000
492000
Ergodicity of hard spheres in a box
N Simányi
Ergodic theory and dynamical systems 19 (3), 741-766, 1999
391999
The complete hyperbolicity of cylindric billiards
N Simányi
Ergodic Theory and Dynamical Systems 22 (1), 281-302, 2002
372002
Conditional proof of the Boltzmann-Sinai ergodic hypothesis
N Simányi
Inventiones mathematicae 177 (2), 381-413, 2009
362009
The Lorentz gas: A paradigm for nonequilibrium stationary states
LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ...
Hard ball systems and the Lorentz gas, 315-365, 2000
322000
Scaling dynamics of a massive piston in an ideal gas
LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ...
Hard ball systems and the Lorentz gas, 217-227, 2000
312000
Dispersing billiards without focal points on surfaces are ergodic
A Krámli, N Simányi, D Szász
Communications in mathematical physics 125 (3), 439-457, 1989
311989
Rényi’s parking problem revisited
MP Clay, NJ Simányi
Stochastics and Dynamics 16 (02), 1660006, 2016
302016
The K-property ofN billiard balls II. Computation of neutral linear spaces
N Simanyi
Inventiones mathematicae 110 (1), 151-172, 1992
281992
Non-integrability of cylindric billiards and transitive Lie group actions
N SIMÁNYI, D SZÁSZ
Ergodic theory and dynamical systems 20 (2), 593-610, 2000
262000
系统目前无法执行此操作,请稍后再试。
文章 1–20