A “transversal” fundamental theorem for semi-dispersing billiards A Krámli, N Simányi, D Szász Communications in mathematical physics 129 (3), 535-560, 1990 | 132 | 1990 |
Decay of correlations for Lorentz gases and hard balls LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ... Hard ball systems and the Lorentz gas, 89-120, 2000 | 103 | 2000 |
Dual polygonal billiards and necklace dynamics E Gutkin, N Simányi Communications in mathematical physics 143, 431-449, 1992 | 95 | 1992 |
The K-property of three billiard balls A Krámli, N Simanyi, D Szasz Annals of Mathematics, 37-72, 1991 | 81 | 1991 |
Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems N Simányi Inventiones Mathematicae 154, 123-178, 2003 | 67 | 2003 |
Hard ball systems are completely hyperbolic N Simányi, D Szász Annals of Mathematics, 35-96, 1999 | 66 | 1999 |
TheK-property of four billiard balls A Krámli, N Simanyi, D Szasz Communications in mathematical physics 144 (1), 107-148, 1992 | 63 | 1992 |
Proof of the ergodic hypothesis for typical hard ball systems N Simányi Annales Henri Poincaré 5 (2), 203-233, 2004 | 59 | 2004 |
The K-property ofN billiard balls I N Simányi Inventiones mathematicae 108 (1), 521-548, 1992 | 58 | 1992 |
Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus A Krámli, N Simányi, D Szász Nonlinearity 2 (2), 311, 1989 | 56 | 1989 |
Boltzmann’s ergodic hypothesis, a conjecture for centuries? LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ... Hard ball systems and the Lorentz gas, 421-446, 2000 | 49 | 2000 |
Ergodicity of hard spheres in a box N Simányi Ergodic theory and dynamical systems 19 (3), 741-766, 1999 | 39 | 1999 |
The complete hyperbolicity of cylindric billiards N Simányi Ergodic Theory and Dynamical Systems 22 (1), 281-302, 2002 | 37 | 2002 |
Conditional proof of the Boltzmann-Sinai ergodic hypothesis N Simányi Inventiones mathematicae 177 (2), 381-413, 2009 | 36 | 2009 |
The Lorentz gas: A paradigm for nonequilibrium stationary states LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ... Hard ball systems and the Lorentz gas, 315-365, 2000 | 32 | 2000 |
Scaling dynamics of a massive piston in an ideal gas LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ... Hard ball systems and the Lorentz gas, 217-227, 2000 | 31 | 2000 |
Dispersing billiards without focal points on surfaces are ergodic A Krámli, N Simányi, D Szász Communications in mathematical physics 125 (3), 439-457, 1989 | 31 | 1989 |
Rényi’s parking problem revisited MP Clay, NJ Simányi Stochastics and Dynamics 16 (02), 1660006, 2016 | 30 | 2016 |
The K-property ofN billiard balls II. Computation of neutral linear spaces N Simanyi Inventiones mathematicae 110 (1), 151-172, 1992 | 28 | 1992 |
Non-integrability of cylindric billiards and transitive Lie group actions N SIMÁNYI, D SZÁSZ Ergodic theory and dynamical systems 20 (2), 593-610, 2000 | 26 | 2000 |