关注
Shengyuan Hu
Shengyuan Hu
在 andrew.cmu.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Ditto: Fair and robust federated learning through personalization
T Li, S Hu, A Beirami, V Smith
International conference on machine learning, 6357-6368, 2021
7662021
A new defense against adversarial images: Turning a weakness into a strength
S Hu, T Yu, C Guo, WL Chao, KQ Weinberger
Advances in neural information processing systems 32, 2019
1282019
On privacy and personalization in cross-silo federated learning
K Liu, S Hu, SZ Wu, V Smith
Advances in neural information processing systems 35, 5925-5940, 2022
392022
Fedsynth: Gradient compression via synthetic data in federated learning
S Hu, J Goetz, K Malik, H Zhan, Z Liu, Y Liu
arXiv preprint arXiv:2204.01273, 2022
292022
Provably fair federated learning via bounded group loss
S Hu, ZS Wu, V Smith
arXiv preprint arXiv:2203.10190 7, 2022
23*2022
Private multi-task learning: Formulation and applications to federated learning
S Hu, ZS Wu, V Smith
arXiv preprint arXiv:2108.12978, 2021
132021
Guardrail baselines for unlearning in llms
P Thaker, Y Maurya, V Smith
arXiv preprint arXiv:2403.03329, 2024
72024
Selection pressure on the rhizosphere microbiome can alter nitrogen use efficiency and seed yield in Brassica rapa
J Garcia, M Gannett, LP Wei, L Cheng, S Hu, J Sparks, J Giovannoni, ...
Communications Biology 5 (1), 959, 2022
62022
Attacking LLM Watermarks by Exploiting Their Strengths
Q Pang, S Hu, W Zheng, V Smith
arXiv preprint arXiv:2402.16187, 2024
32024
Privacy Amplification for the Gaussian Mechanism via Bounded Support
S Hu, S Mahloujifar, V Smith, K Chaudhuri, C Guo
arXiv preprint arXiv:2403.05598, 2024
12024
Federated Learning as a Network Effects Game
S Hu, DD Ngo, S Zheng, V Smith, ZS Wu
arXiv preprint arXiv:2302.08533, 2023
12023
Jogging the Memory of Unlearned Model Through Targeted Relearning Attack
S Hu, Y Fu, ZS Wu, V Smith
arXiv preprint arXiv:2406.13356, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–12