Data re-uploading for a universal quantum classifier A Pérez-Salinas, A Cervera-Lierta, E Gil-Fuster, JI Latorre Quantum 4, 226, 2020 | 498 | 2020 |
Exploiting symmetry in variational quantum machine learning JJ Meyer, M Mularski, E Gil-Fuster, AA Mele, F Arzani, A Wilms, J Eisert PRX Quantum 4 (1), 010328, 2023 | 124 | 2023 |
Encoding-dependent generalization bounds for parametrized quantum circuits MC Caro, E Gil-Fuster, JJ Meyer, J Eisert, R Sweke Quantum 5, 582, 2021 | 98 | 2021 |
Training quantum embedding kernels on near-term quantum computers T Hubregtsen, D Wierichs, E Gil-Fuster, PJHS Derks, PK Faehrmann, ... Physical Review A 106 (4), 042431, 2022 | 83 | 2022 |
Understanding quantum machine learning also requires rethinking generalization E Gil-Fuster, J Eisert, C Bravo-Prieto Nature Communications 15 (1), 2277, 2024 | 14 | 2024 |
Potential and limitations of random fourier features for dequantizing quantum machine learning R Sweke, E Recio, S Jerbi, E Gil-Fuster, B Fuller, J Eisert, JJ Meyer arXiv preprint arXiv:2309.11647, 2023 | 8 | 2023 |
On the expressivity of embedding quantum kernels E Gil-Fuster, J Eisert, V Dunjko Machine Learning: Science and Technology 5 (2), 025003, 2024 | 3 | 2024 |
On the relation between trainability and dequantization of variational quantum learning models E Gil-Fuster, C Gyurik, A Pérez-Salinas, V Dunjko arXiv preprint arXiv:2406.07072, 2024 | | 2024 |