Scaling for a one-dimensional directed polymer with boundary conditions T Seppäläinen Annals of Probability 40 (1), 19-73, 2012 | 263 | 2012 |
A course on large deviations with an introduction to Gibbs measures F Rassoul-Agha, T Seppäläinen American Mathematical Soc., 2015 | 202 | 2015 |
The analytic network process in energy policy planning RP Hamalainen, TO Seppalainen Socio-Economic Planning Sciences 20 (6), 399-405, 1986 | 184 | 1986 |
Tropical combinatorics and Whittaker functions I Corwin, N O’Connell, T Seppäläinen, N Zygouras Duke Mathematical Journal 163 (3), 513-563, 2014 | 171 | 2014 |
Existence of hydrodynamics for the totally asymmetric simple K-exclusion process T Seppäläinen Annals of Probability 27 (1), 361-415, 1999 | 131 | 1999 |
Cube root fluctuations for the corner growth model associated to the exclusion process M Balázs, E Cator, T Seppalainen Electronic Journal of Probability 11, 1094-1132, 2006 | 127 | 2006 |
Fluctuation exponent of the KPZ/stochastic Burgers equation M Balázs, J Quastel, T Seppäläinen J. Amer. Math. Soc 24, 683-708, 2011 | 120* | 2011 |
Geometric RSK correspondence, Whittaker functions and symmetrized random polymers N O’Connell, T Seppäläinen, N Zygouras Inventiones Mathematicae 197 (2), 361-416, 2014 | 102 | 2014 |
An almost sure invariance principle for random walks in a space-time random environment F Rassoul-Agha, T Seppäläinen Probability Theory and Related Fields 133 (3), 299-314, 2005 | 100 | 2005 |
A microscopic model for the Burgers equation and longest increasing subsequences T Seppäläinen Electronic Journal of Probability 1, 1-51, 1996 | 96 | 1996 |
Order of current variance and diffusivity in the asymmetric simple exclusion process M Balazs, T Seppalainen Ann. of Math. (2) 171 (2), 1237-1265, 2010 | 90 | 2010 |
Coupling the totally asymmetric simple exclusion process with a moving interface T Seppäläinen Markov Process. Related Fields 4 (4), 593-628, 1998 | 88 | 1998 |
Large deviations for increasing sequences on the plane T Seppäläinen Probability Theory and Related Fields 112, 221-244, 1998 | 87 | 1998 |
Quenched free energy and large deviations for random walks in random potentials F Rassoul‐Agha, T Seppäläinen, A Yilmaz Communications on Pure and Applied Mathematics 66 (2), 202-244, 2013 | 86 | 2013 |
Hydrodynamic scaling, convex duality and asymptotic shapes of growth models T Seppalainen Markov Process. Related Fields 4 (1), 1-26, 1998 | 82 | 1998 |
Exact limiting shape for a simplified model of first-passage percolation on the plane T Seppäläinen Annals of Probability 26 (3), 1232-1250, 1998 | 75 | 1998 |
The strict-weak lattice polymer I Corwin, T Seppäläinen, H Shen Journal of Statistical Physics 160 (4), 1027-1053, 2015 | 71 | 2015 |
Bounds for scaling exponents for a 1+1 dimensional directed polymer in a Brownian environment T Seppalainen, B Valko ALEA Lat. Am. J. Probab. Math. Stat. 7, 293-318, 2010 | 69 | 2010 |
Stationary cocycles and Busemann functions for the corner growth model N Georgiou, F Rassoul-Agha, T Seppäläinen Probability Theory and Related Fields 169, 177-222, 2017 | 65 | 2017 |
Geodesics and the competition interface for the corner growth model N Georgiou, F Rassoul-Agha, T Seppäläinen Probability Theory and Related Fields 169, 223-255, 2017 | 56 | 2017 |