Bond: Benchmarking unsupervised outlier node detection on static attributed graphs K Liu, Y Dou, Y Zhao, X Ding, X Hu, R Zhang, K Ding, C Chen, H Peng, ... Advances in Neural Information Processing Systems 35, 27021-27035, 2022 | 63 | 2022 |
Pygod: A python library for graph outlier detection K Liu, Y Dou, X Ding, X Hu, R Zhang, H Peng, L Sun, SY Philip Journal of Machine Learning Research 25 (141), 1-9, 2024 | 35 | 2024 |
Hyperparameter sensitivity in deep outlier detection: Analysis and a scalable hyper-ensemble solution X Ding, L Zhao, L Akoglu Thirty-sixth Conference on Neural Information Processing Systems, 2022 | 19 | 2022 |
Combining machine learning models using combo library Y Zhao, X Wang, C Cheng, X Ding Proceedings of the AAAI Conference on Artificial Intelligence 34 (09), 13648 …, 2020 | 17 | 2020 |
Benchmarking node outlier detection on graphs K Liu, Y Dou, Y Zhao, X Ding, X Hu, R Zhang, K Ding, C Chen, H Peng, ... arXiv preprint arXiv:2206.10071, 2022 | 13 | 2022 |
PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks LZ Zhao, X Ding, BA Prakash arXiv preprint arXiv:2307.11833, 2023 | 10 | 2023 |
SUOD: toward scalable unsupervised outlier detection Y Zhao, X Ding, J Yang, H Bai arXiv preprint arXiv:2002.03222, 2020 | 10 | 2020 |
From explanation to action: An end-to-end human-in-the-loop framework for anomaly reasoning and management X Ding, N Seleznev, S Kumar, CB Bruss, L Akoglu arXiv preprint arXiv:2304.03368, 2023 | 4 | 2023 |
Physics informed machine learning with misspecified priors:\\an analysis of turning operation in lathe machines Z Zhao, X Ding, G Atulya, A Davis, A Singh AAAI 2022 Workshop on AI for Design and Manufacturing (ADAM), 2021 | 3 | 2021 |
Improving and Unifying Discrete&Continuous-time Discrete Denoising Diffusion L Zhao, X Ding, L Yu, L Akoglu arXiv preprint arXiv:2402.03701, 2024 | 1 | 2024 |
Pard: Permutation-Invariant Autoregressive Diffusion for Graph Generation L Zhao, X Ding, L Akoglu arXiv preprint arXiv:2402.03687, 2024 | | 2024 |
From Detection to Action: a Human-in-the-loop Toolkit for Anomaly Reasoning and Management X Ding, N Seleznev, S Kumar, CB Bruss, L Akoglu Proceedings of the Fourth ACM International Conference on AI in Finance, 279-287, 2023 | | 2023 |
Fast Unsupervised Deep Outlier Model Selection with Hypernetworks X Ding, Y Zhao, L Akoglu arXiv preprint arXiv:2307.10529, 2023 | | 2023 |
PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks L Zhiyuan Zhao, X Ding, B Aditya Prakash arXiv e-prints, arXiv: 2307.11833, 2023 | | 2023 |
Hyperparameter Sensitivity in Deep Outlier Detection X Ding, L Zhao, L Akoglu arXiv preprint arXiv:2206.07647, 2022 | | 2022 |