Behavior proximal policy optimization Z Zhuang, K Lei, J Liu, D Wang, Y Guo arXiv preprint arXiv:2302.11312, 2023 | 29 | 2023 |
Dara: Dynamics-aware reward augmentation in offline reinforcement learning J Liu, H Zhang, D Wang International Conference on Learning Representations, 2022, 2022 | 29 | 2022 |
Chipformer: Transferable chip placement via offline decision transformer Y Lai, J Liu, Z Tang, B Wang, J Hao, P Luo International Conference on Machine Learning, 18346-18364, 2023 | 26 | 2023 |
Beyond reward: Offline preference-guided policy optimization Y Kang, D Shi, J Liu, L He, D Wang arXiv preprint arXiv:2305.16217, 2023 | 25 | 2023 |
Learn goal-conditioned policy with intrinsic motivation for deep reinforcement learning J Liu, D Wang, Q Tian, Z Chen Proceedings of the AAAI conference on artificial intelligence 36 (7), 7558-7566, 2022 | 21 | 2022 |
Unsupervised domain adaptation with dynamics-aware rewards in reinforcement learning J Liu, H Shen, D Wang, Y Kang, Q Tian Advances in Neural Information Processing Systems 34, 28784-28797, 2021 | 16 | 2021 |
Independent skill transfer for deep reinforcement learning Q Tian, G Wang, J Liu, D Wang, Y Kang Proceedings of the Twenty-Ninth International Conference on International …, 2021 | 16 | 2021 |
Unsupervised discovery of transitional skills for deep reinforcement learning Q Tian, J Liu, G Wang, D Wang 2021 International Joint Conference on Neural Networks (IJCNN), 1-8, 2021 | 13 | 2021 |
Ceil: Generalized contextual imitation learning J Liu, L He, Y Kang, Z Zhuang, D Wang, H Xu Advances in Neural Information Processing Systems 36, 75491-75516, 2023 | 12 | 2023 |
Beyond ood state actions: Supported cross-domain offline reinforcement learning J Liu, Z Zhang, Z Wei, Z Zhuang, Y Kang, S Gai, D Wang Proceedings of the AAAI Conference on Artificial Intelligence 38 (12), 13945 …, 2024 | 9 | 2024 |
Design from policies: Conservative test-time adaptation for offline policy optimization J Liu, H Zhang, Z Zhuang, Y Kang, D Wang, B Wang Advances in Neural Information Processing Systems 36, 2024 | 8 | 2024 |
Clue: Calibrated latent guidance for offline reinforcement learning J Liu, L Zu, L He, D Wang Conference on Robot Learning, 906-927, 2023 | 6 | 2023 |
Time series prediction with interpretable data reconstruction Q Tian, J Liu, D Wang, A Tang Proceedings of the 28th ACM International Conference on Information and …, 2019 | 6 | 2019 |
Offline imitation learning with variational counterfactual reasoning Z Sun, B He, J Liu, X Chen, C Ma, S Zhang Advances in Neural Information Processing Systems 36, 2023 | 3 | 2023 |
Offline imitation learning with variational counterfactual reasoning B He, Z Sun, J Liu, S Zhang, X Chen, C Ma arXiv preprint arXiv:2310.04706, 2023 | 2 | 2023 |
Off-dynamics inverse reinforcement learning from hetero-domain Y Kang, J Liu, X Cao, D Wang arXiv preprint arXiv:2110.11443, 2021 | 2 | 2021 |
DIDI: Diffusion-Guided Diversity for Offline Behavioral Generation J Liu, X Guo, Z Zhuang, D Wang arXiv preprint arXiv:2405.14790, 2024 | 1 | 2024 |
Reinformer: Max-Return Sequence Modeling for Offline RL Z Zhuang, D Peng, J Liu, Z Zhang, D Wang arXiv preprint arXiv:2405.08740, https://arxiv.org/pdf/2405.08740, 2024 | 1 | 2024 |
Multivariate time series prediction with PID-based residual compensation J Liu, Q Tian, D Wang 2020 International Joint Conference on Neural Networks (IJCNN), 1-7, 2020 | 1 | 2020 |
Learning transitional skills with intrinsic motivation Q Tian, J Liu, D Wang | 1 | 2020 |