关注
Wujie Wang
Wujie Wang
Generate Biomedicines, Inc.
在 mit.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Illuminating protein space with a programmable generative model
JB Ingraham, M Baranov, Z Costello, KW Barber, W Wang, A Ismail, ...
Nature 623 (7989), 1070-1078, 2023
1972023
Coarse-Graining Auto-Encoders for Molecular Dynamics
W Wang, R Gómez-Bombarelli
npj Computational Materials, 2019, 2019
1742019
Forces are not enough: Benchmark and critical evaluation for machine learning force fields with molecular simulations
X Fu, Z Wu, W Wang, T Xie, S Keten, R Gomez-Bombarelli, T Jaakkola
arXiv preprint arXiv:2210.07237, 2022
1272022
An end-to-end framework for molecular conformation generation via bilevel programming
M Xu, W Wang, S Luo, C Shi, Y Bengio, R Gomez-Bombarelli, J Tang
International conference on machine learning, 11537-11547, 2021
802021
Active learning accelerates ab initio molecular dynamics on reactive energy surfaces
SJ Ang, W Wang, D Schwalbe-Koda, S Axelrod, R Gómez-Bombarelli
Chem, 2021
602021
Active Learning and Neural Network Potentials Accelerate Molecular Screening of Ether-based Solvate Ionic Liquids
W Wang, T Yang, WH Harris, R Gómez-Bombarelli
Chemical Communications, 2020, 2020
502020
Temperature-transferable coarse-graining of ionic liquids with dual graph convolutional neural networks
J Ruza, W Wang, D Schwalbe-Koda, S Axelrod, WH Harris, ...
The Journal of chemical physics 153 (16), 2020
462020
Differentiable molecular simulations for control and learning
W Wang, S Axelrod, R Gómez-Bombarelli
arXiv preprint arXiv:2003.00868, 2020
412020
Generative coarse-graining of molecular conformations
W Wang, M Xu, C Cai, BK Miller, T Smidt, Y Wang, J Tang, ...
International Conference on Machine Learning (ICML), 2022, 2022
322022
Holliday junction thermodynamics and structure: Coarse-grained simulations and experiments
W Wang, LM Nocka, BZ Wiemann, DM Hinckley, I Mukerji, FW Starr
Scientific reports 6 (1), 22863, 2016
312016
Learning pair potentials using differentiable simulations
W Wang, Z Wu, JCB Dietschreit, R Gómez-Bombarelli
The Journal of Chemical Physics 158 (4), 2023
172023
Active learning accelerates ab initio molecular dynamics on pericyclic reactive energy surfaces
SJ Ang, W Wang, D Schwalbe-Koda, S Axelrod, R Gomez-Bombarelli
ChemRxiv, 2020
12020
Learning Coarse-Grained Particle Latent Space with Auto-Encoders
W Wang, R Gómez-Bombarelli
Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019 …, 2019
12019
Holliday junction thermodynamics and structure: comparisons of coarse-grained simulations and experiments
FW Starr, W Wang, LM Nocka, BZ Wiemann, DM Hinckley, I Mukerji
Biophysical Journal 110 (3), 178a, 2016
12016
Differentiable Multiscale Molecular Simulations
W Wang
Massachusetts Institute of Technology, 2022
2022
Differentiable Molecular Simulations
W Wang, S Axelrod, R Gomez-Bombarelli
APS March Meeting Abstracts 2021, B22. 012, 2021
2021
Investigation of the Melting Thermodynamics of a DNA 4-Way Junction: One Base at a Time
RE Savage, W Wang, FW Starr, I Mukerji
Biophysical Journal 112 (3), 69a-70a, 2017
2017
Differentiable Molecular Simulations for Learning and Control
W Wang, S Axelrod, R Gómez-Bombarelli
This journal is© The Royal Society of Chemistry 2020
B Wang, C Zhao
系统目前无法执行此操作,请稍后再试。
文章 1–19