A Godunov type scheme for a class of LWR traffic flow models with non-local flux J Friedrich, O Kolb, S Göttlich arXiv preprint arXiv:1802.07484, 2018 | 71 | 2018 |
A non-local traffic flow model for 1-to-1 junctions FA Chiarello, J Friedrich, P Goatin, S Göttlich, O Kolb European Journal of Applied Mathematics 31 (6), 1029-1049, 2020 | 41 | 2020 |
Micro-macro limit of a nonlocal generalized Aw-Rascle type model FA Chiarello, J Friedrich, P Goatin, S Göttlich SIAM Journal on Applied Mathematics 80 (4), 1841-1861, 2020 | 41 | 2020 |
Modeling multilane traffic with moving obstacles by nonlocal balance laws A Bayen, J Friedrich, A Keimer, L Pflug, T Veeravalli SIAM Journal on Applied Dynamical Systems 21 (2), 1495-1538, 2022 | 28 | 2022 |
Maximum principle satisfying CWENO schemes for nonlocal conservation laws J Friedrich, O Kolb SIAM Journal on Scientific Computing 41 (2), A973-A988, 2019 | 23 | 2019 |
Network models for nonlocal traffic flow J Friedrich, S Göttlich, M Osztfalk ESAIM: Mathematical Modelling and Numerical Analysis 56 (1), 213-235, 2022 | 15 | 2022 |
Nonlocal approaches for multilane traffic models J Friedrich, S Göttlich, E Rossi arXiv preprint arXiv:2012.05794, 2020 | 15 | 2020 |
Conservation laws with nonlocal velocity: the singular limit problem J Friedrich, S Göttlich, A Keimer, L Pflug SIAM Journal on Applied Mathematics 84 (2), 497-522, 2024 | 11 | 2024 |
Numerical schemes for a class of nonlocal conservation laws: a general approach J Friedrich, S Sudha, S Rathan arXiv preprint arXiv:2302.07724, 2023 | 7 | 2023 |
Lyapunov stabilization for nonlocal traffic flow models J Friedrich, S Göttlich, M Herty SIAM Journal on Control and Optimization 61 (5), 2849-2875, 2023 | 3 | 2023 |
A Godunov type scheme for a class of scalar conservation laws with non-local flux J Friedrich, O Kolb, S Göttlich ArXiv e-prints, 2018 | 3 | 2018 |
Conservation laws with nonlocality in density and velocity and their applicability in traffic flow modelling J Friedrich, S Göttlich, A Keimer, L Pflug XVI International Conference on Hyperbolic Problems: Theory, Numerics …, 2022 | 2 | 2022 |
Traffic flow models with nonlocal velocity J Friedrich Dr. Hut, 2021 | 1 | 2021 |
Source identification using different moment hierarchies J Friedrich, S Schraven, F Kiessling, M Herty arXiv preprint arXiv:2405.10110, 2024 | | 2024 |
A non-local traffic flow model for 1-to-1 junctions with buffer FA Chiarello, J Friedrich, S GÖttlich arXiv preprint arXiv:2307.09786, 2023 | | 2023 |
Lyapunov stabilization of a nonlocal LWR traffic flow model J Friedrich PAMM 23 (1), e202200084, 2023 | | 2023 |
Conservation laws with discontinuous flux function on networks: a splitting algorithm J Friedrich, S Göttlich, A Uphoff arXiv preprint arXiv:2204.04640, 2022 | | 2022 |