Low-dose CT with a residual encoder-decoder convolutional neural network H Chen, Y Zhang, MK Kalra, F Lin, Y Chen, P Liao, J Zhou, G Wang IEEE transactions on medical imaging 36 (12), 2524-2535, 2017 | 1718 | 2017 |
Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss Q Yang, P Yan, Y Zhang, H Yu, Y Shi, X Mou, MK Kalra, Y Zhang, L Sun, ... IEEE transactions on medical imaging 37 (6), 1348-1357, 2018 | 1627 | 2018 |
Low-dose CT via convolutional neural network H Chen, Y Zhang, W Zhang, P Liao, K Li, J Zhou, G Wang Biomedical optics express 8 (2), 679-694, 2017 | 822 | 2017 |
Low-dose X-ray CT reconstruction via dictionary learning Q Xu, H Yu, X Mou, L Zhang, J Hsieh, G Wang IEEE Transactions on Medical Imaging 31 (9), 1682-1697, 2012 | 754 | 2012 |
Compressed sensing based interior tomography H Yu, G Wang Physics in medicine & biology 54 (9), 2791, 2009 | 705 | 2009 |
A general cone-beam reconstruction algorithm G Wang, TH Lin, P Cheng, DM Shinozaki IEEE Transactions on Medical Imaging 12 (3), 486-496, 1993 | 555 | 1993 |
A perspective on deep imaging G Wang IEEE Access 4, 8914-8924, 2016 | 548 | 2016 |
Iterative deblurring for CT metal artifact reduction G Wang, DL Snyder, JA O'Sullivan, MW Vannier IEEE transactions on medical imaging 15 (5), 657-664, 1996 | 524 | 1996 |
Image Reconstruction Is a New Frontier of Machine Learning G Wang, JC Ye, K Mueller, JA Fessler IEEE transactions on medical imaging 37 (6), 1289-1296, 2018 | 513 | 2018 |
CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE) C You, G Li, Y Zhang, X Zhang, H Shan, M Li, S Ju, Z Zhao, Z Zhang, ... IEEE transactions on medical imaging 39 (1), 188-203, 2019 | 509 | 2019 |
On interpretability of artificial neural networks: A survey FL Fan, J Xiong, M Li, G Wang IEEE Transactions on Radiation and Plasma Medical Sciences 5 (6), 741-760, 2021 | 497* | 2021 |
3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network H Shan, Y Zhang, Q Yang, U Kruger, MK Kalra, L Sun, W Cong, G Wang IEEE transactions on medical imaging 37 (6), 1522-1534, 2018 | 490 | 2018 |
Deep learning for tomographic image reconstruction G Wang, JC Ye, B De Man Nature Machine Intelligence 2 (12), 737-748, 2020 | 471 | 2020 |
An outlook on x‐ray CT research and development G Wang, H Yu, B De Man Medical physics 35 (3), 1051-1064, 2008 | 445 | 2008 |
LEARN: Learned experts’ assessment-based reconstruction network for sparse-data CT H Chen, Y Zhang, Y Chen, J Zhang, W Zhang, H Sun, Y Lv, P Liao, J Zhou, ... IEEE transactions on medical imaging 37 (6), 1333-1347, 2018 | 431 | 2018 |
Standard handbook of biomedical engineering & design M Kutz McGraw-Hill Education, 2003 | 402 | 2003 |
Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction H Shan, A Padole, F Homayounieh, U Kruger, RD Khera, C Nitiwarangkul, ... Nature Machine Intelligence 1 (6), 269-276, 2019 | 386 | 2019 |
A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop CP Langlotz, B Allen, BJ Erickson, J Kalpathy-Cramer, K Bigelow, ... Radiology 291 (3), 781-791, 2019 | 379 | 2019 |
Uniqueness theorems in bioluminescence tomography G Wang, Y Li, M Jiang Medical physics 31 (8), 2289-2299, 2004 | 376 | 2004 |
Practical reconstruction method for bioluminescence tomography W Cong, G Wang, D Kumar, Y Liu, M Jiang, LV Wang, EA Hoffman, ... Optics Express 13 (18), 6756-6771, 2005 | 362 | 2005 |