关注
Maximilian Alber
Maximilian Alber
在 tu-berlin.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
The (un) reliability of saliency methods
PJ Kindermans, S Hooker, J Adebayo, M Alber, KT Schütt, S Dähne, ...
Explainable AI: Interpreting, explaining and visualizing deep learning, 267-280, 2019
7142019
iNNvestigate neural networks!
M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ...
Journal of machine learning research 20 (93), 1-8, 2019
4042019
Learning how to explain neural networks: Patternnet and patternattribution
PJ Kindermans, KT Schütt, M Alber, KR Müller, D Erhan, B Kim, S Dähne
arXiv preprint arXiv:1705.05598, 2017
3972017
Explanations can be manipulated and geometry is to blame
AK Dombrowski, M Alber, C Anders, M Ackermann, KR Müller, P Kessel
Advances in neural information processing systems 32, 2019
3332019
Artificial intelligence and pathology: from principles to practice and future applications in histomorphology and molecular profiling
A Stenzinger, M Alber, M Allgäuer, P Jurmeister, M Bockmayr, J Budczies, ...
Seminars in cancer biology 84, 129-143, 2022
582022
Patternnet and patternlrp–improving the interpretability of neural networks
PJ Kindermans, KT Schütt, M Alber, KR Müller, S Dähne
arXiv preprint arXiv:1705.05598 3, 2017
452017
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
PJ Kindermans, S Hooker, J Adebayo, M Alber, KT Schütt, S Dähne, ...
Cham: Springer International Publishing,, 2019
282019
Toward explainable artificial intelligence for precision pathology
F Klauschen, J Dippel, P Keyl, P Jurmeister, M Bockmayr, A Mock, ...
Annual Review of Pathology: Mechanisms of Disease 19, 541-570, 2024
172024
Backprop evolution
M Alber, I Bello, B Zoph, PJ Kindermans, P Ramachandran, Q Le
arXiv preprint arXiv:1808.02822, 2018
172018
An empirical study on the properties of random bases for kernel methods
M Alber, PJ Kindermans, K Schütt, KR Müller, F Sha
Advances in Neural Information Processing Systems 30, 2017
172017
Software and application patterns for explanation methods
M Alber
Explainable AI: interpreting, explaining and visualizing deep learning, 399-433, 2019
142019
Distributed optimization of multi-class SVMs
M Alber, J Zimmert, U Dogan, M Kloft
PloS one 12 (6), e0178161, 2017
142017
Interpretable deep neural network to predict estrogen receptor status from haematoxylin-eosin images
P Seegerer, A Binder, R Saitenmacher, M Bockmayr, M Alber, ...
Artificial Intelligence and Machine Learning for Digital Pathology: State-of …, 2020
132020
Learning how to explain neural networks: Patternnet and patternattribution (2017)
PJ Kindermans, KT Schütt, M Alber, KR Müller, D Erhan, B Kim, S Dähne
arXiv preprint arXiv:1705.05598, 2018
132018
Deep learning assisted diagnosis of onychomycosis on whole-slide images
P Jansen, A Creosteanu, V Matyas, A Dilling, A Pina, A Saggini, ...
Journal of Fungi 8 (9), 912, 2022
82022
Clarifying Assumptions About Artificial Intelligence Before Revolutionising Patent Law
D Kim, M Alber, MW Kwok, J MitroviĆ, C Ramirez-Atencia, JÚARÍ PÉrez, ...
GRUR International 71 (4), 295-321, 2022
52022
Analysing cerebrospinal fluid with explainable deep learning: From diagnostics to insights
L Schweizer, P Seegerer, H Kim, R Saitenmacher, A Muench, L Barnick, ...
Neuropathology and Applied Neurobiology 49 (1), e12866, 2023
42023
How to iNNvestigate neural networks' predictions!
M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ...
42018
RudolfV: A Foundation Model by Pathologists for Pathologists
J Dippel, B Feulner, T Winterhoff, S Schallenberg, G Dernbach, A Kunft, ...
arXiv preprint arXiv:2401.04079, 2024
32024
Ten Assumptions About Artificial Intelligence That Can Mislead Patent Law Analysis
D Kim, M Alber, MW Kwok, J Mitrovic, C Ramirez-Atencia, ...
Max Planck Institute for Innovation & Competition Research Paper, 2021
32021
系统目前无法执行此操作,请稍后再试。
文章 1–20