Variational Fourier features for Gaussian processes J Hensman, N Durrande, A Solin Journal of Machine Learning Research 18 (151), 1-52, 2018 | 231 | 2018 |
Additive covariance kernels for high-dimensional Gaussian process modeling N Durrande, D Ginsbourger, O Roustant Annales de la Faculté des sciences de Toulouse: Mathématiques 21 (3), 481-499, 2012 | 145* | 2012 |
ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis N Durrande, D Ginsbourger, O Roustant, L Carraro Journal of Multivariate Analysis 115, 57-67, 2013 | 94 | 2013 |
Matérn Gaussian processes on graphs V Borovitskiy, I Azangulov, A Terenin, P Mostowsky, M Deisenroth, ... International Conference on Artificial Intelligence and Statistics, 2593-2601, 2021 | 86 | 2021 |
Finite-dimensional Gaussian approximation with linear inequality constraints AF López-Lopera, F Bachoc, N Durrande, O Roustant SIAM/ASA Journal on Uncertainty Quantification 6 (3), 1224-1255, 2018 | 86 | 2018 |
Nested Kriging predictions for datasets with a large number of observations D Rullière, N Durrande, F Bachoc, C Chevalier Statistics and Computing 28, 849-867, 2018 | 81 | 2018 |
Sparse Gaussian processes with spherical harmonic features V Dutordoir, N Durrande, J Hensman International Conference on Machine Learning, 2793-2802, 2020 | 63 | 2020 |
Detecting periodicities with Gaussian processes N Durrande, J Hensman, M Rattray, ND Lawrence PeerJ Computer Science 2, e50, 2016 | 59* | 2016 |
A tutorial on sparse Gaussian processes and variational inference F Leibfried, V Dutordoir, ST John, N Durrande arXiv preprint arXiv:2012.13962, 2020 | 48 | 2020 |
Distance-based kriging relying on proxy simulations for inverse conditioning D Ginsbourger, B Rosspopoff, G Pirot, N Durrande, P Renard Advances in water resources 52, 275-291, 2013 | 42 | 2013 |
An analytic comparison of regularization methods for Gaussian processes H Mohammadi, RL Riche, N Durrande, E Touboul, X Bay arXiv preprint arXiv:1602.00853, 2016 | 41 | 2016 |
Banded matrix operators for Gaussian Markov models in the automatic differentiation era N Durrande, V Adam, L Bordeaux, S Eleftheriadis, J Hensman The 22nd International Conference on Artificial Intelligence and Statistics …, 2019 | 36 | 2019 |
Deep neural networks as point estimates for deep Gaussian processes V Dutordoir, J Hensman, M van der Wilk, CH Ek, Z Ghahramani, ... Advances in Neural Information Processing Systems 34, 9443-9455, 2021 | 31 | 2021 |
Doubly sparse variational Gaussian processes V Adam, S Eleftheriadis, A Artemev, N Durrande, J Hensman International Conference on Artificial Intelligence and Statistics, 2874-2884, 2020 | 31 | 2020 |
On degeneracy and invariances of random fields paths with applications in Gaussian process modelling D Ginsbourger, O Roustant, N Durrande Journal of statistical planning and inference 170, 117-128, 2016 | 28 | 2016 |
On ANOVA decompositions of kernels and Gaussian random field paths D Ginsbourger, O Roustant, D Schuhmacher, N Durrande, N Lenz Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April …, 2016 | 26 | 2016 |
Bayesian quantile and expectile optimisation V Picheny, H Moss, L Torossian, N Durrande Uncertainty in Artificial Intelligence, 1623-1633, 2022 | 23 | 2022 |
kergp: Gaussian process laboratory Y Deville, D Ginsbourger, O Roustant, N Durrande R package version 0.2. 0, 2015 | 20 | 2015 |
Single and multiple crack localization in beam-like structures using a Gaussian process regression approach N Corrado, N Durrande, M Gherlone, J Hensman, M Mattone, C Surace Journal of Vibration and Control 24 (18), 4160-4175, 2018 | 18 | 2018 |
Gaussian process modulated Cox processes under linear inequality constraints AF López-Lopera, ST John, N Durrande The 22nd International Conference on Artificial Intelligence and Statistics …, 2019 | 17 | 2019 |