关注
Johannes Hertrich
标题
引用次数
引用次数
年份
Parseval proximal neural networks
M Hasannasab, J Hertrich, S Neumayer, G Plonka, S Setzer, G Steidl
Journal of Fourier Analysis and Applications 26, 1-31, 2020
572020
Convolutional proximal neural networks and plug-and-play algorithms
J Hertrich, S Neumayer, G Steidl
Linear Algebra and its Applications 631, 203-234, 2021
562021
Stochastic normalizing flows for inverse problems: a Markov Chains viewpoint
P Hagemann, J Hertrich, G Steidl
SIAM/ASA Journal on Uncertainty Quantification 10 (3), 1162-1190, 2022
462022
PatchNR: learning from very few images by patch normalizing flow regularization
F Altekrüger, A Denker, P Hagemann, J Hertrich, P Maass, G Steidl
Inverse Problems 39 (6), 064006, 2023
27*2023
Generalized Normalizing Flows via Markov Chains
P Hagemann, J Hertrich, G Steidl
Elements in Non-local Data Interactions: Foundations and Applications, 2023
252023
PCA reduced Gaussian mixture models with applications in superresolution
J Hertrich, DPL Nguyen, JF Aujol, D Bernard, Y Berthoumieu, A Saadaldin, ...
Inverse Problems and Imaging 16 (2), 341-366, 2022
232022
Alternatives to the EM algorithm for ML estimation of location, scatter matrix, and degree of freedom of the student t distribution
M Hasannasab, J Hertrich, F Laus, G Steidl
Numerical Algorithms 87 (1), 77-118, 2021
222021
WPPNets and WPPFlows: The power of Wasserstein patch priors for superresolution
F Altekrüger, J Hertrich
SIAM Journal on Imaging Sciences 16 (3), 1033-1067, 2023
192023
Wasserstein patch prior for image superresolution
J Hertrich, A Houdard, C Redenbach
IEEE Transactions on Computational Imaging 8, 693-704, 2022
192022
Inertial stochastic PALM and applications in machine learning
J Hertrich, G Steidl
Sampling Theory, Signal Processing, and Data Analysis 20, 1-33, 2022
18*2022
Neural Wasserstein Gradient Flows for Discrepancies with Riesz Kernels
F Altekrüger, J Hertrich, G Steidl
International Conference on Machine Learning (ICML) 2023, 2023
17*2023
Wasserstein steepest descent flows of discrepancies with Riesz kernels
J Hertrich, M Gräf, R Beinert, G Steidl
Journal of Mathematical Analysis and Applications 531 (1), 127829, 2024
162024
Posterior sampling based on gradient flows of the MMD with negative distance kernel
P Hagemann, J Hertrich, F Altekrüger, R Beinert, J Chemseddine, G Steidl
International Conference on Learning Representations (ICLR) 2024, 2024
162024
Generative sliced MMD flows with Riesz kernels
J Hertrich, C Wald, F Altekrüger, P Hagemann
International Conference on Learning Representations (ICLR) 2024, 2024
142024
Wasserstein Gradient Flows of the Discrepancy with Distance Kernel on the Line
J Hertrich, R Beinert, M Gräf, G Steidl
International Conference on Scale Space and Variational Methods in Computer …, 2023
82023
Manifold learning by mixture models of vaes for inverse problems
GS Alberti, J Hertrich, M Santacesaria, S Sciutto
Journal of Machine Learning Research 25 (202), 1-35, 2024
62024
Proximal residual flows for bayesian inverse problems
J Hertrich
International Conference on Scale Space and Variational Methods in Computer …, 2023
52023
Variational models for color image correction inspired by visual perception and neuroscience
T Batard, J Hertrich, G Steidl
Journal of Mathematical Imaging and Vision 62 (9), 1173-1194, 2020
42020
Fast kernel summation in high dimensions via slicing and Fourier transforms
J Hertrich
arXiv preprint arXiv:2401.08260, 2024
32024
Sparse Mixture Models inspired by ANOVA Decompositions
J Hertrich, FA Ba, G Steidl
Electronic Transactions on Numerical Analysis 55, 142-168, 2021
32021
系统目前无法执行此操作,请稍后再试。
文章 1–20