关注
Yanzhou Wang
Yanzhou Wang
Aalto University
在 xs.ustb.edu.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport
Z Fan, Z Zeng, C Zhang, Y Wang, K Song, H Dong, Y Chen, T Ala-Nissila
Physical Review B 104 (10), 104309, 2021
1732021
GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations
Z Fan, Y Wang, P Ying, K Song, J Wang, Y Wang, Z Zeng, K Xu, ...
The Journal of Chemical Physics 157 (11), 2022
1162022
Elastic behavior and intrinsic carrier mobility for monolayer SnS and SnSe: First-principles calculations
LB Shi, M Yang, S Cao, Q You, YY Niu, YZ Wang
Applied Surface Science 492, 435-448, 2019
452019
Structure and Pore Size Distribution in Nanoporous Carbon
Y Wang, Z Fan, P Qian, T Ala-Nissila, MA Caro
https://pubs.acs.org/doi/full/10.1021/acs.chemmater.1c03279 34 (2), 617-628, 2022
432022
Quantum-corrected thickness-dependent thermal conductivity in amorphous silicon predicted by machine learning molecular dynamics simulations
Y Wang, Z Fan, P Qian, MA Caro, T Ala-Nissila
Physical Review B 107 (5), 054303, 2023
382023
A minimal Tersoff potential for diamond silicon with improved descriptions of elastic and phonon transport properties
Z Fan, Y Wang, X Gu, P Qian, Y Su, T Ala-Nissila
Journal of Physics: Condensed Matter 32 (13), 135901, 2019
222019
Size and stoichiometry effect of FePt bimetal nanoparticle catalyst for CO oxidation: A DFT study
L Li, YZ Wang, XX Wang, KK Song, XD Jian, P Qian, Y Bai, YJ Su
The Journal of Physical Chemistry C 124 (16), 8706-8715, 2020
182020
An investigation on carrier transport behavior of tetragonal halide perovskite: First-principles calculation
Y Su, H Wang, LB Shi, YZ Wang, Q Liu, P Qian
Materials Science in Semiconductor Processing 150, 106836, 2022
92022
Theoretical prediction of intrinsic carrier mobility of monolayer C7N6: First-principles study
Y Zhang, S Cao, Y Wang, X Jian, L Shi, P Qian
Physics Letters A 401, 127340, 2021
72021
Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials
H Dong, Y Shi, P Ying, K Xu, T Liang, Y Wang, Z Zeng, X Wu, W Zhou, ...
Journal of Applied Physics 135 (16), 2024
62024
General-purpose machine-learned potential for 16 elemental metals and their alloys
K Song, R Zhao, J Liu, Y Wang, E Lindgren, Y Wang, S Chen, K Xu, ...
arXiv preprint arXiv:2311.04732, 2023
62023
Study of oxygen evolution reaction on amorphous Au 13@ Ni 120 P 50 nanocluster
Y Wang, P Gao, X Wang, J Huo, L Li, Y Zhang, AA Volinsky, P Qian, Y Su
Physical Chemistry Chemical Physics 20 (21), 14545-14556, 2018
62018
Investigation of carrier transport behavior for cubic CH3NH3SnX3 and CH3NH3PbX3 (X= Br and I) using Boltzmann transport equation
Y Su, N Li, LB Shi, YZ Wang, P Qian
Computational Materials Science 213, 111609, 2022
52022
Catalytic activity, thermal stability and structural evolution of PdCu single-atom alloy catalysts: the effects of size and morphology
Q Liu, X Wang, L Li, K Song, Y Wang, P Qian
RSC advances 12 (1), 62-71, 2022
52022
Correcting force error-induced underestimation of lattice thermal conductivity in machine learning molecular dynamics
X Wu, W Zhou, H Dong, P Ying, Y Wang, B Song, Z Fan, S Xiong
The Journal of Chemical Physics 161 (1), 2024
32024
Thermal transports of 2D phosphorous carbides by machine learning molecular dynamics simulations
C Cao, S Cao, YX Zhu, H Dong, Y Wang, P Qian
International Journal of Heat and Mass Transfer 224, 125359, 2024
22024
General-purpose machine-learned potential for 16 elemental metals and their alloys
Z Fan, K Song, R Zhao, J Liu, Y Wang, E Lindgren, Y Wang, S Chen, K Xu, ...
12023
Mechanical and thermodynamic properties study of Al-based binary and ternary solid solutions using the pseudoatomic potential method
JR Huo, K Wang, YZ Wang, P Qian, C Ji, Y Su
Intermetallics 126, 106931, 2020
12020
Correcting force error-induced underestimation of lattice thermal conductivity in machine learning molecular dynamics
GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations Zheyong Fan, Yanzhou Wang, 2, 3 Penghua Ying, 4 Keke …
系统目前无法执行此操作,请稍后再试。
文章 1–20