关注
Jie Zhang
Jie Zhang
ETH Zurich, Institute of Information Security
在 inf.ethz.ch 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Federated mutual learning: a collaborative machine learning method for heterogeneous data, models, and objectives
T Shen, J Zhang, X Jia, F Zhang, Z Lv, K Kuang, C Wu, F Wu
Frontiers of Information Technology & Electronic Engineering 24 (10), 1390-1402, 2023
118*2023
Federated learning with label distribution skew via logits calibration
J Zhang, Z Li, B Li, J Xu, S Wu, S Ding, C Wu
International Conference on Machine Learning, 26311-26329, 2022
952022
Dense: Data-free one-shot federated learning
J Zhang, C Chen, B Li, L Lyu, S Wu, S Ding, C Shen, C Wu
Advances in Neural Information Processing Systems 35, 21414-21428, 2022
83*2022
Towards efficient data free black-box adversarial attack
J Zhang, B Li, J Xu, S Wu, S Ding, L Zhang, C Wu
CVPR 2022, 15115-15125, 2022
562022
Accelerating Dataset Distillation via Model Augmentation
L Zhang, J Zhang, B Lei, S Mukherjee, X Pan, B Zhao, C Ding, Y Li, D Xu
CVPR 2023, 2022
372022
Gear: a margin-based federated adversarial training approach
C Chen, J Zhang, L Lyu
International Workshop on Trustable, Verifiable, and Auditable Federated …, 2022
26*2022
Target: Federated class-continual learning via exemplar-free distillation
J Zhang, C Chen, W Zhuang, L Lyu
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023
23*2023
Delving into the adversarial robustness of federated learning
J Zhang, B Li, C Chen, L Lyu, S Wu, S Ding, C Wu
AAAI 2023, 2023
182023
Ideal: Query-efficient data-free learning from black-box models
J Zhang, C Chen, L Lyu
The Eleventh International Conference on Learning Representations, 2022
18*2022
Sampling to distill: Knowledge transfer from open-world data
Y Wang, Z Chen, J Zhang, D Yang, Z Ge, Y Liu, S Liu, Y Sun, W Zhang, ...
arXiv preprint arXiv:2307.16601, 2023
102023
Adversarial examples for good: Adversarial examples guided imbalanced learning
J Zhang, L Zhang, G Li, C Wu
2022 IEEE International Conference on Image Processing (ICIP), 136-140, 2022
102022
Federated generative learning with foundation models
J Zhang, X Qi, B Zhao
arXiv preprint arXiv:2306.16064, 2023
82023
Rethinking Data Distillation: Do Not Overlook Calibration
D Zhu, B Lei, J Zhang, Y Fang, R Zhang, Y Xie, D Xu
ICCV 2023, 2023
72023
Feddtg: Federated data-free knowledge distillation via three-player generative adversarial networks
Z Zhang, T Shen, J Zhang, C Wu
arXiv preprint arXiv:2201.03169, 2022
72022
Real-fake: Effective training data synthesis through distribution matching
J Yuan, J Zhang, S Sun, P Torr, B Zhao
International Conference on Learning Representations (ICLR), 2024
62024
Diffclass: Diffusion-based class incremental learning
Z Meng, J Zhang, C Yang, Z Zhan, P Zhao, Y WAng
ECCV 2024, 2024
42024
Jailbreaking Prompt Attack: A Controllable Adversarial Attack against Diffusion Models
J Ma, A Cao, Z Xiao, J Zhang, C Ye, J Zhao
arXiv preprint arXiv:2404.02928, 2024
32024
Evaluations of Machine Learning Privacy Defenses are Misleading
M Aerni, J Zhang, F Tramèr
arXiv preprint arXiv:2404.17399, 2024
12024
Federated Domain Adaptation via Pseudo-label Refinement
G Li, Q Zhang, P Wang, J Zhang, C Wu
2023 IEEE International Conference on Multimedia and Expo (ICME), 1829-1834, 2023
12023
Blind Baselines Beat Membership Inference Attacks for Foundation Models
D Das, J Zhang, F Tramèr
arXiv preprint arXiv:2406.16201, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20