关注
Danny D'Agostino
Danny D'Agostino
Research Fellow, Centre for Quantitative Medicine, Duke-NUS Medical School
在 nus.edu.sg 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Design-space assessment and dimensionality reduction: An off-line method for shape reparameterization in simulation-based optimization
D D’Agostino, A Serani, M Diez
Ocean Engineering 197, 106852, 2020
452020
Nonlinear methods for design-space dimensionality reduction in shape optimization
D D’Agostino, A Serani, EF Campana, M Diez
Machine Learning, Optimization, and Big Data: Third International Conference …, 2018
412018
Deep autoencoder for off-line design-space dimensionality reduction in shape optimization
D D'Agostino, A Serani, EF Campana, M Diez
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials …, 2018
36*2018
Recurrent-type neural networks for real-time short-term prediction of ship motions in high sea state
D D'Agostino, A Serani, F Stern, M Diez
arXiv preprint arXiv:2105.13102, 2021
172021
Time-series forecasting for ships maneuvering in waves via recurrent-type neural networks
D D’Agostino, A Serani, F Stern, M Diez
Journal of Ocean Engineering and Marine Energy 8 (4), 479-487, 2022
162022
Assessing the interplay of shape and physical parameters by unsupervised nonlinear dimensionality reduction methods
A Serani, D D'Agostino, EF Campana, M Diez
Journal of Ship Research 64 (04), 313-327, 2020
162020
Assessing the interplay of shape and physical parameters by nonlinear dimensionality reduction methods
A Serani, D D’Agostino, EF Campana, M Diez
Proceedings of the 32st Symposium on Naval Hydrodynamics, Hamburg, Germany, 2018
102018
On the combined effect of design-space dimensionality reduction and optimization methods on shape optimization efficiency
D D'Agostino, A Serani, M Diez
2018 Multidisciplinary Analysis and Optimization Conference, 4058, 2018
92018
Augmented design-space exploration by nonlinear dimensionality reduction methods
D D’Agostino, A Serani, EF Campana, M Diez
Machine Learning, Optimization, and Data Science: 4th International …, 2019
62019
Observing piv measurements through the lens of data clustering
D D’Agostino, M Andre, P Bardet, A Serani, M Felli, M Diez
33rd Symposium on Naval Hydrodynamics, 2020
52020
PIV data clustering of a buoyant jet in a stratified environment
A Serani, D Durante, M Diez, D D'Agostino, S Clement, J Badra, M Andre, ...
AIAA Scitech 2019 Forum, 1830, 2019
52019
Generative models for anomaly detection and design-space dimensionality reduction in shape optimization
D D’Agostino
Engineering Applications of Artificial Intelligence 129, 107566, 2024
22024
PIV Snapshot Clustering Reveals the Dual Deterministic and Chaotic Nature of Propeller Wakes at Macro-and Micro-Scales
D D’Agostino, M Diez, M Felli, A Serani
Journal of Marine Science and Engineering 11 (6), 1220, 2023
22023
An Efficient Global Optimization Algorithm with Adaptive Estimates of the Local Lipschitz Constants
D D'Agostino
arXiv preprint arXiv:2211.04129, 2022
22022
Learning active subspaces and discovering important features with Gaussian radial basis functions neural networks
D D’Agostino, I Ilievski, CA Shoemaker
Neural Networks 176, 106335, 2024
12024
Federated Learning for Clinical Structured Data: A Benchmark Comparison of Engineering and Statistical Approaches
S Li, D Miao, Q Wu, C Hong, D D'Agostino, X Li, Y Ning, Y Shang, H Fu, ...
arXiv preprint arXiv:2311.03417, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–16