关注
Devbhadra V. Shah
Devbhadra V. Shah
Associate Professor of Mathematics, Veer Narmad South Gujarat University, Surat, INDIA
在 vnsgu.ac.in 的电子邮件经过验证
标题
引用次数
引用次数
年份
Binet–type formula for the sequence of Tetranacci numbers by alternate methods
GS Hathiwala, DV Shah
Mathematical Journal of Interdisciplinary Sciences 6 (1), 37-48, 2017
412017
Some tribonacci identities
V Shah Devbhadra
Mathematics Today 27, 1-9, 2011
142011
Left k-Fibonacci sequence and related identities
MP Arvadia, DV Shah
Journal Club for Applied Sciences 2 (1), 20-26, 2015
52015
A new class of generalized Lucas sequence
MS Shah, DV Shah
International Journal of Advanced Research in Engineering, Science and …, 2015
52015
Extended Binet’s formula for the class of generalized Fibonacci sequences
DM Diwan, DV Shah
VNSGU Journal of Science and Technology 4 (1), 205-210, 2015
42015
Generalized double Fibonomial numbers
M Shah, S Devbhadra
Ratio Mathematica 40, 163, 2021
32021
Alternateproofs for the infinite number of solutions of pell's equation
BM Madni, DV Shah
International Journal of Engineering, Science and Mathematics 7 (4), 255-259, 2018
32018
Explicit and recursive formulae for the class of generalized Fibonacci sequence
DM Diwan, DV Shah
International Journal of Advanced Research in Engineering, Science and …, 2015
32015
Right k-Fibonacci sequence and related identities
P Arvadia Mansukh, V Shah Devbhadra
International Research Journal of Mathematics, Engineering & IT 2, 25-39, 2015
32015
Some Interesting properties and Extended Binet Formula for the Generalized Lucas Sequence
M Diwan Daksha, V Shah Devbhadra
International Journal of Innovative Research in Science, Engineering and …, 2015
22015
Golden proportions for the generalized Tribonacci numbers
DV Shah, DA Mehta
International journal of mathematical education in science and technology 40 …, 2009
22009
Distribution of Pellian Triplets
DV Shah
MATHEMATICS EDUCATION-INDIA- 36 (2), 71-82, 2002
22002
On the solutions of a Pellian equation U^2-DV^2=k^2 N
BMM Devbhadra V. Shah
Ratio Mathematica 41, 206 - 222, 2021
1*2021
Blocks within the period of Lucas sequence
RPP Devbhadra V. Shah
Ratio Mathematica 41, 71 - 78, 2021
1*2021
The sequence of trifurcating Fibonacci numbers
PAP Devbhadra V. Shah
Ratio Mathematica 41, 181 - 196, 2021
1*2021
Some Identities Involving the Generalized Lucas Numbers
MSSMS Shah, DVSDV Shah
Mathematical Journal of Interdisciplinary Sciences 9 (1), 11-15, 2020
12020
Roman Fibonomial Numbers
MS Shah, DV Shah
International Journal of Innovation in Science and Mathematics 6 (5), 160-163, 2018
12018
Golden proportions for the generalized Tetranacci numbers
GS Hathiwala, DV Shah
International Research Journal of Mathematics, Enigneering and IT 3 (4), 90-101, 2016
12016
Generalized Fibonacci sequence and its properties
VR Patel, DV Shah
International Journal of Physics and Mathematical Science 4 (2), 118-124, 2014
12014
Some properties and extended Binet’s formula for the class of bifurcating Fibonacci sequence
DM Diwan, DV Shah, VR Patel
Ratio Mathematica 51, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20