关注
Toryn Q. Klassen
Toryn Q. Klassen
University of Toronto, Vector Institute
在 cs.toronto.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning
R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
ICML 2018, 2112--2121, 2018
333*2018
LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning
A Camacho, R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
IJCAI 2019, 6065-6073, 2019
2542019
Reward machines: Exploiting reward function structure in reinforcement learning
R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
Journal of Artificial Intelligence Research 73, 173-208, 2022
2132022
Teaching Multiple Tasks to an RL Agent using LTL
R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
AAMAS 2018, 452-461, 2018
1482018
Learning Reward Machines for Partially Observable Reinforcement Learning
R Toro Icarte, E Waldie, TQ Klassen, R Valenzano, M Castro, SA McIlraith
NeurIPS 2019, 15497--15508, 2019
1442019
Advice-based exploration in model-based reinforcement learning
R Toro Icarte, TQ Klassen, RA Valenzano, SA McIlraith
Canadian Conference on Artificial Intelligence, 72-83, 2018
302018
Towards the Role of Theory of Mind in Explanation
M Shvo, TQ Klassen, SA McIlraith
EXTRAAMAS 2020: Explainable, Transparent Autonomous Agents and Multi-Agent …, 2020
282020
Epistemic plan recognition
M Shvo, TQ Klassen, S Sohrabi, SA McIlraith
Proceedings of the 19th International Conference on Autonomous Agents and …, 2020
262020
Be Considerate: Avoiding Negative Side Effects in Reinforcement Learning
P Alizadeh Alamdari, TQ Klassen, R Toro Icarte, SA McIlraith
Proceedings of the 21st International Conference on Autonomous Agents and …, 2022
172022
Learning Reward Machines: A Study in Partially Observable Reinforcement Learning
RT Icarte, TQ Klassen, R Valenzano, MP Castro, E Waldie, SA McIlraith
Artificial Intelligence, 103989, 2023
152023
Resolving Misconceptions about the Plans of Agents via Theory of Mind
M Shvo, TQ Klassen, SA McIlraith
Proceedings of the International Conference on Automated Planning and …, 2022
132022
Planning to Avoid Side Effects
TQ Klassen, SA McIlraith, C Muise, J Xu
Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence …, 2022
122022
Learning to follow instructions in text-based games
M Tuli, AC Li, P Vaezipoor, TQ Klassen, S Sanner, SA McIlraith
Advances in Neural Information Processing Systems 35, 19441-19455, 2022
112022
Independence of tabulation-based hash classes
TQ Klassen, P Woelfel
Latin American Symposium on Theoretical Informatics, 506-517, 2012
112012
Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines
AC Li, Z Chen, P Vaezipoor, TQ Klassen, RT Icarte, SA McIlraith
arXiv preprint arXiv:2211.10902, 2022
92022
The act of remembering: a study in partially observable reinforcement learning
R Toro Icarte, R Valenzano, TQ Klassen, P Christoffersen, A Farahmand, ...
arXiv preprint arXiv:2010.01753, 2020
82020
Towards tractable inference for resource-bounded agents
TQ Klassen, SA McIlraith, HJ Levesque
Commonsense 2015, 89--95, 2015
82015
Using Advice in Model-Based Reinforcement Learning
R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
RLDM 2017, 2017
7*2017
Searching for Markovian Subproblems to Address Partially Observable Reinforcement Learning
R Toro Icarte, E Waldie, TQ Klassen, R Valenzano, MP Castro, ...
RLDM 2019, 2019
6*2019
Specifying Plausibility Levels for Iterated Belief Change in the Situation Calculus
TQ Klassen, SA McIlraith, HJ Levesque
KR 2018, 257-266, 2018
62018
系统目前无法执行此操作,请稍后再试。
文章 1–20