Demystifying MMD GANs M Bińkowski, DJ Sutherland, M Arbel, A Gretton International Conference on Learning Representations, 2018 | 1326 | 2018 |
Pot: Python optimal transport R Flamary, N Courty, A Gramfort, MZ Alaya, A Boisbunon, S Chambon, ... Journal of Machine Learning Research 22 (78), 1-8, 2021 | 766 | 2021 |
Generative models and model criticism via optimized maximum mean discrepancy DJ Sutherland, HY Tung, H Strathmann, S De, A Ramdas, A Smola, ... International Conference on Learning Representations, 2017 | 312 | 2017 |
On the error of random Fourier features DJ Sutherland, J Schneider Uncertainty in Artificial Intelligence, 2015 | 212 | 2015 |
Learning Deep Kernels for Non-Parametric Two-Sample Tests F Liu, W Xu, J Lu, G Zhang, A Gretton, DJ Sutherland arXiv preprint arXiv:2002.09116, 2020 | 173 | 2020 |
Does invariant risk minimization capture invariance? P Kamath, A Tangella, D Sutherland, N Srebro International Conference on Artificial Intelligence and Statistics, 4069-4077, 2021 | 116 | 2021 |
A machine learning approach for dynamical mass measurements of galaxy clusters M Ntampaka, H Trac, DJ Sutherland, N Battaglia, B Póczos, J Schneider The Astrophysical Journal 803 (2), 50, 2015 | 111 | 2015 |
On gradient regularizers for MMD GANs M Arbel, DJ Sutherland, M Bińkowski, A Gretton Advances in neural information processing systems, 6700-6710, 2018 | 98 | 2018 |
Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning M Ntampaka, H Trac, DJ Sutherland, S Fromenteau, B Póczos, ... The Astrophysical Journal 831 (2), 2016 | 85 | 2016 |
Learning deep kernels for exponential family densities L Wenliang, DJ Sutherland, H Strathmann, A Gretton International Conference on Machine Learning, 6737-6746, 2019 | 78 | 2019 |
The role of machine learning in the next decade of cosmology M Ntampaka, C Avestruz, S Boada, J Caldeira, J Cisewski-Kehe, ... arXiv preprint arXiv:1902.10159, 2019 | 67 | 2019 |
Nonparametric Kernel Estimators for Image Classification B Póczos, L Xiong, DJ Sutherland, J Schneider Computer Vision and Pattern Recognition, 2989-2996, 2012 | 65 | 2012 |
Self-supervised learning with kernel dependence maximization Y Li, R Pogodin, DJ Sutherland, A Gretton Advances in Neural Information Processing Systems 34, 15543-15556, 2021 | 61 | 2021 |
Exphormer: Sparse transformers for graphs H Shirzad, A Velingker, B Venkatachalam, DJ Sutherland, AK Sinop International Conference on Machine Learning, 31613-31632, 2023 | 57 | 2023 |
Uniform convergence of interpolators: Gaussian width, norm bounds and benign overfitting F Koehler, L Zhou, DJ Sutherland, N Srebro Advances in Neural Information Processing Systems 34, 20657-20668, 2021 | 57 | 2021 |
Active learning and search on low-rank matrices DJ Sutherland, B Póczos, J Schneider Proceedings of the 19th ACM SIGKDD international conference on Knowledge …, 2013 | 47 | 2013 |
Bayesian Approaches to Distribution Regression HCL Law, DJ Sutherland, D Sejdinovic, S Flaxman AISTATS, 2018 | 43 | 2018 |
Efficient and principled score estimation with Nyström kernel exponential families DJ Sutherland, H Strathmann, M Arbel, A Gretton AISTATS, 2018 | 41 | 2018 |
On Uniform Convergence and Low-Norm Interpolation Learning L Zhou, DJ Sutherland, N Srebro arXiv preprint arXiv:2006.05942, 2020 | 34 | 2020 |
Kernels on sample sets via nonparametric divergence estimates DJ Sutherland, L Xiong, B Póczos, J Schneider arXiv preprint arXiv:1202.0302, 2012 | 32* | 2012 |