关注
Karkulali Pugalenthi
Karkulali Pugalenthi
Scientist, Singapore Institute of Manufacturing and Technology
在 simtech.a-star.edu.sg 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Leak detection in gas distribution pipelines using acoustic impact monitoring
P Karkulali, H Mishra, A Ukil, J Dauwels
IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society …, 2016
362016
A holistic comparison of the different resampling algorithms for particle filter based prognosis using lithium ion batteries as a case study
K Pugalenthi, N Raghavan
Microelectronics Reliability 91, 160-169, 2018
352018
Prognosis of power MOSFET resistance degradation trend using artificial neural network approach
K Pugalenthi, H Park, N Raghavan
Microelectronics Reliability 100, 113467, 2019
262019
Pressure and flow variation in gas distribution pipeline for leak detection
RS Reddy, G Payal, P Karkulali, M Himanshu, A Ukil, J Dauwels
2016 IEEE International Conference on Industrial Technology (ICIT), 679-683, 2016
252016
Piecewise model-based online prognosis of lithium-ion batteries using particle filters
K Pugalenthi, H Park, N Raghavan
Ieee Access 8, 153508-153516, 2020
162020
Remaining useful life prediction of lithium-ion batteries using neural networks with adaptive bayesian learning
K Pugalenthi, H Park, S Hussain, N Raghavan
Sensors 22 (10), 3803, 2022
132022
Hybrid particle filter trained neural network for prognosis of lithium-ion batteries
K Pugalenthi, H Park, S Hussain, N Raghavan
IEEE Access 9, 135132-135143, 2021
132021
Online Prognosis of Bimodal Crack Evolution for Fatigue Life Prediction of Composite Laminates Using Particle Filters
K Pugalenthi, PL Trung Duong, J Doh, S Hussain, MH Jhon, N Raghavan
Applied Sciences 11 (13), 6046, 2021
122021
Testbed for real-time monitoring of leak in low pressure gas pipeline
H Mishra, P Karkulali, A Ukil, J Dauwels
IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society …, 2016
102016
Predicting lumen degradation of light emitting diodes using hybrid particle filter trained neural networks
K Pugalenthi, H Park, S Hussain, N Raghavan
IEEE Access 9, 167292-167304, 2021
42021
Roughening particle filter based prognosis on power MOSFETs using ON-resistance variation
K Pugalenthi, N Raghavan
2018 Prognostics and system health management conference (PHM-Chongqing …, 2018
42018
Study on partial stratified resampling for particle filter based prognosis on li-ion batteries
K Pugalenthi, N Raghavan
2018 Prognostics and System Health Management Conference (PHM-Chongqing …, 2018
32018
Prognosis of LED lumen degradation using Bayesian optimized neural network approach
K Pugalenthi, SLH Lim, H Park, S Hussain, N Raghavan
Microelectronics Reliability 138, 114728, 2022
12022
Remaining Useful Life Estimation for Lithium-Ion Batteries using Physics-Informed Neural Networks
K Pugalenthi, H Park, S Hussain, N Raghavan
2024 IEEE International Conference on Prognostics and Health Management …, 2024
2024
Remaining Useful Life Estimation of Lithium-Ion Batteries Via Hyperparameter Optimized Bi-Long Short-Term Memory Recurrent Neural Networks
R Sahay, K Pugalenthi, N Raghavan
2023 Global Reliability and Prognostics and Health Management Conference …, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–15