关注
Luca Cantarello
Luca Cantarello
在 ecmwf.int 的电子邮件经过验证
标题
引用次数
引用次数
年份
The CAMS greenhouse gas reanalysis from 2003 to 2020
A Agustí-Panareda, J Barré, S Massart, A Inness, I Aben, M Ades, ...
Atmospheric Chemistry and Physics 23 (6), 3829-3859, 2023
312023
Quantification of methane emissions from hotspots and during COVID-19 using a global atmospheric inversion
J McNorton, N Bousserez, A Agustí-Panareda, G Balsamo, L Cantarello, ...
Atmospheric Chemistry and Physics 22 (9), 5961-5981, 2022
282022
Spatial interpolation of two‐metre temperature over Norway based on the combination of numerical weather prediction ensembles and in situ observations
C Lussana, IA Seierstad, TN Nipen, L Cantarello
Quarterly Journal of the Royal Meteorological Society 145 (725), 3626-3643, 2019
112019
An idealized 1½-layer isentropic model with convection and precipitation for satellite data assimilation research. Part II: Model derivation
O Bokhove, L Cantarello, S Tobias
Journal of the Atmospheric Sciences 79 (3), 875-886, 2022
62022
Idealized forecast-assimilation experiments for convective-scale Numerical Weather Prediction
T Kent, L Cantarello, G Inverarity, S Tobias, O Bokhove
EarthArXiv, 2020
62020
An idealized 1½-layer isentropic model with convection and precipitation for satellite data assimilation research. Part I: Model dynamics
L Cantarello, O Bokhove, S Tobias
Journal of the Atmospheric Sciences 79 (3), 859-873, 2022
32022
Modified shallow water models and idealised satellite data assimilation
L Cantarello
University of Leeds, 2021
22021
Experiments with the modified Rotating Shallow Water model (modRSW, v. 1.0): assessing the relevance for convective-scale data assimilation research
T Kent, L Cantarello, G Inverarity, S Tobias, O Bokhove
Geoscientific Model Development Discussions 2022, 1-40, 2022
12022
Idealised forecast-assimilation experiments and their relevance for convective-scale Numerical Weather Prediction.
T Kent, G Inverarity, L Cantarello, S Tobias, O Bokhove
Geophysical Research Abstracts 21, 2019
12019
Flow-dependent observation errors for GHG inversions in an ensemble Kalman smoother
M Steiner, L Cantarello, S Henne, D Brunner
EGUsphere 2024, 1-24, 2024
2024
An idealized 1.5-layer isentropic model with convection and precipitationfor satellite data assimilation research. Part I: model dynamics
L Cantarello, O Bokhove, S Tobias
EarthArXiv, 2021
2021
An idealized data assimilation framework to study the impact of simulated satellite observations at different length scales
L Cantarello, O Bokhove, G Inverarity, S Migliorini, S Tobias
101st American Meteorological Society Annual Meeting, 2021
2021
An idealized 1
O Bokhove, L Cantarello, S Tobias
2021
An idealized 1
L Cantarello, O Bokhove, S Tobias
2021
Idealised satellite data assimilation experiments with clouds and precipitation
L Cantarello, O Bokhove, G Inverarity, S Migliorini, S Tobias
EGU General Assembly Conference Abstracts, 332, 2020
2020
Modifications to an idealised data assimilation scheme for research in convective-scale satellite data assimilation.
L Cantarello, O Bokhove, S Tobias, G Inverarity, S Migliorini
Geophysical Research Abstracts 21, 2019
2019
An idealised setup for future experiments in satellite data assimilation research
L Cantarello, O Bokhove, S Tobias, G Inverarity, S Migliorini
Analisi delle previsioni mensili mediante il modello GLOBO (ISAC-CNR)
A Buzzi, DD Mastrangelo, L Cantarello
Investigating satellite radiance data assimilation at different scales in an idealised convective modelling framework
L Cantarello, O Bokhove, S Tobias, GIL Cantarello, G Inverarity
Simulating idealised satellite radiance observations
L Cantarello
系统目前无法执行此操作,请稍后再试。
文章 1–20