beta-vae: Learning basic visual concepts with a constrained variational framework. I Higgins, L Matthey, A Pal, CP Burgess, X Glorot, MM Botvinick, ... ICLR (Poster) 3, 2017 | 4985 | 2017 |
Understanding disentangling in -VAE CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ... arXiv preprint arXiv:1804.03599, 2018 | 1147 | 2018 |
Towards a definition of disentangled representations I Higgins, D Amos, D Pfau, S Racaniere, L Matthey, D Rezende, ... arXiv preprint arXiv:1812.02230, 2018 | 522 | 2018 |
Monet: Unsupervised scene decomposition and representation CP Burgess, L Matthey, N Watters, R Kabra, I Higgins, M Botvinick, ... arXiv preprint arXiv:1901.11390, 2019 | 515 | 2019 |
Darla: Improving zero-shot transfer in reinforcement learning I Higgins, A Pal, A Rusu, L Matthey, C Burgess, A Pritzel, M Botvinick, ... International Conference on Machine Learning, 1480-1490, 2017 | 497 | 2017 |
Multi-object representation learning with iterative variational inference K Greff, RL Kaufman, R Kabra, N Watters, C Burgess, D Zoran, L Matthey, ... International conference on machine learning, 2424-2433, 2019 | 475 | 2019 |
dsprites: Disentanglement testing sprites dataset L Matthey, I Higgins, D Hassabis, A Lerchner | 409 | 2017 |
Unsupervised Model Selection for Variational Disentangled Representation Learning S Duan, L Matthey, A Saraiva, N Watters, CP Burgess, A Lerchner, ... arXiv preprint arXiv:1905.12614, 2019 | 217* | 2019 |
Early visual concept learning with unsupervised deep learning I Higgins, L Matthey, X Glorot, A Pal, B Uria, C Blundell, S Mohamed, ... arXiv preprint arXiv:1606.05579, 2016 | 196 | 2016 |
International Conference on Learning Representations I Higgins, L Matthey, A Pal, C Burgess, X Glorot, M Botvinick, S Mohamed, ... ICLR 2017, Toulon, France, 2017 | 172 | 2017 |
Spatial broadcast decoder: A simple architecture for learning disentangled representations in vaes N Watters, L Matthey, CP Burgess, A Lerchner arXiv preprint arXiv:1901.07017, 2019 | 143 | 2019 |
Scan: Learning hierarchical compositional visual concepts I Higgins, N Sonnerat, L Matthey, A Pal, CP Burgess, M Bosnjak, ... arXiv preprint arXiv:1707.03389, 2017 | 135 | 2017 |
Life-long disentangled representation learning with cross-domain latent homologies A Achille, T Eccles, L Matthey, C Burgess, N Watters, A Lerchner, ... Advances in Neural Information Processing Systems 31, 2018 | 134 | 2018 |
Cobra: Data-efficient model-based rl through unsupervised object discovery and curiosity-driven exploration N Watters, L Matthey, M Bosnjak, CP Burgess, A Lerchner arXiv preprint arXiv:1905.09275, 2019 | 122 | 2019 |
Multi-object datasets R Kabra, C Burgess, L Matthey, RL Kaufman, K Greff, M Reynolds, ... DeepMind 5 (6), 7, 2019 | 72 | 2019 |
Simone: View-invariant, temporally-abstracted object representations via unsupervised video decomposition R Kabra, D Zoran, G Erdogan, L Matthey, A Creswell, M Botvinick, ... Advances in Neural Information Processing Systems 34, 20146-20159, 2021 | 70 | 2021 |
Response variability in balanced cortical networks A Lerchner, C Ursta, J Hertz, M Ahmadi, P Ruffiot, S Enemark Neural computation 18 (3), 634-659, 2006 | 64 | 2006 |
Understanding disentangling in β CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ... arXiv preprint arXiv:1804.03599, 2018 | 55 | 2018 |
Parts: Unsupervised segmentation with slots, attention and independence maximization D Zoran, R Kabra, A Lerchner, DJ Rezende Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 48 | 2021 |
Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex A Lerchner, G Sterner, J Hertz, M Ahmadi Network: Computation in Neural Systems 17 (2), 131-150, 2006 | 34 | 2006 |