Synthetic Data--what, why and how? J Jordon, L Szpruch, F Houssiau, M Bottarelli, G Cherubin, C Maple, ... arXiv preprint arXiv:2205.03257, 2022 | 120 | 2022 |
Reconstructing training data with informed adversaries B Balle, G Cherubin, J Hayes 2022 IEEE Symposium on Security and Privacy (SP), 1138-1156, 2022 | 117 | 2022 |
Website fingerprinting defenses at the application layer G Cherubin, J Hayes, M Juarez Proceedings on Privacy Enhancing Technologies 2017 (2), 186-203, 2017 | 100 | 2017 |
Online website fingerprinting: Evaluating website fingerprinting attacks on tor in the real world G Cherubin, R Jansen, C Troncoso 31st USENIX Security Symposium (USENIX Security 22), 753-770, 2022 | 57 | 2022 |
Bayes, not Naïve: Security Bounds on Website Fingerprinting Defenses G Cherubin Proceedings on Privacy Enhancing Technologies 2017 (4), 215-231, 2017 | 54 | 2017 |
Disparate vulnerability: On the unfairness of privacy attacks against machine learning M Yaghini, B Kulynych, G Cherubin, C Troncoso arXiv e-prints, arXiv: 1906.00389, 2019 | 45 | 2019 |
Disparate vulnerability to membership inference attacks B Kulynych, M Yaghini, G Cherubin, M Veale, C Troncoso arXiv preprint arXiv:1906.00389, 2019 | 36 | 2019 |
F-BLEAU: fast black-box leakage estimation G Cherubin, K Chatzikokolakis, C Palamidessi 2019 IEEE Symposium on Security and Privacy (SP), 835-852, 2019 | 35 | 2019 |
Conformal clustering and its application to botnet traffic G Cherubin, I Nouretdinov, A Gammerman, R Jordaney, Z Wang, D Papini, ... Statistical Learning and Data Sciences: Third International Symposium, SLDS …, 2015 | 26 | 2015 |
SoK: Let the privacy games begin! A unified treatment of data inference privacy in machine learning A Salem, G Cherubin, D Evans, B Köpf, A Paverd, A Suri, S Tople, ... 2023 IEEE Symposium on Security and Privacy (SP), 327-345, 2023 | 23 | 2023 |
Majority Vote Ensembles of Conformal Predictors G Cherubin | 20 | 2018 |
Bayes security: A not so average metric K Chatzikokolakis, G Cherubin, C Palamidessi, C Troncoso 2023 IEEE 36th Computer Security Foundations Symposium (CSF), 388-406, 2023 | 16* | 2023 |
Exact Optimization of Conformal Predictors via Incremental and Decremental Learning G Cherubin, K Chatzikokolakis, M Jaggi Proceedings of the 38th International Conference on Machine Learning 139 …, 2021 | 16 | 2021 |
Approximating full conformal prediction at scale via influence functions JA Martinez, U Bhatt, A Weller, G Cherubin Proceedings of the AAAI Conference on Artificial Intelligence 37 (6), 6631-6639, 2023 | 9* | 2023 |
Conformal and probabilistic prediction with applications A Gammerman, V Vovk, H Boström, L Carlsson Machine Learning 108, 379-380, 2019 | 9 | 2019 |
Exchangeability martingales for selecting features in anomaly detection G Cherubin, A Baldwin, J Griffin Conformal and Probabilistic Prediction and Applications, 157-170, 2018 | 7 | 2018 |
Synthetic data–what, why and how?(2022) J Jordon, L Szpruch, F Houssiau, M Bottarelli, G Cherubin, C Maple, ... arXiv preprint arXiv:2205.03257, 0 | 6 | |
Closed-Form Bounds for DP-SGD against Record-level Inference G Cherubin, B Köpf, A Paverd, S Tople, L Wutschitz, S Zanella-Béguelin arXiv preprint arXiv:2402.14397, 2024 | 3 | 2024 |
Fast conformal classification using influence functions U Bhatt, A Weller, G Cherubin Conformal and Probabilistic Prediction and Applications, 303-305, 2021 | 3 | 2021 |
Hidden markov models with confidence G Cherubin, I Nouretdinov Symposium on Conformal and Probabilistic Prediction with Applications, 128-144, 2016 | 3 | 2016 |