Learning deep transformer models for machine translation Q Wang, B Li, T Xiao, J Zhu, C Li, DF Wong, LS Chao ACL 2019, 2019 | 779 | 2019 |
Connecting large language models with evolutionary algorithms yields powerful prompt optimizers Q Guo, R Wang, J Guo, B Li, K Song, X Tan, G Liu, J Bian, Y Yang ICLR 2024, 2023 | 109 | 2023 |
Does Multi-Encoder Help? A Case Study on Context-Aware Neural Machine Translation B Li, H Liu, Z Wang, Y Jiang, T Xiao, J Zhu, T Liu, C Li ACL 2020, 2020 | 79 | 2020 |
The niutrans machine translation systems for wmt19 B Li, Y Li, C Xu, Y Lin, J Liu, H Liu, Z Wang, Y Zhang, N Xu, Z Wang, ... WMT 2019, 257-266, 2019 | 52 | 2019 |
On Vision Features in Multimodal Machine Translation B Li, C Lv, Z Zhou, T Zhou, T Xiao, A Ma, JB Zhu ACL 2022, 2022 | 45 | 2022 |
Shallow-to-Deep Training for Neural Machine Translation B Li, Z Wang, H Liu, Y Jiang, Q Du, T Xiao, H Wang, J Zhu EMNLP 2020, 2020 | 41 | 2020 |
Learning Light-Weight Translation Models from Deep Transformer B Li, Z Wang, H Liu, Q Du, T Xiao, C Zhang, J Zhu AAAI 2021, 2020 | 35 | 2020 |
ODE Transformer: An Ordinary Differential Equation-Inspired Model for Sequence Generation B Li, Q Du, T Zhou, Y Jing, S Zhou, X Zeng, T Xiao, JB Zhu, X Liu, ... ACL 2022, 2022 | 34* | 2022 |
Weight Distillation: Transferring the Knowledge in Neural Network Parameters Y Lin, Y Li, Z Wang, B Li, Q Du, T Xiao, J Zhu ACL 2021, 2020 | 21 | 2020 |
The niutrans machine translation systems for wmt20 Y Zhang, Z Wang, R Cao, B Wei, W Shan, S Zhou, A Reheman, T Zhou, ... WMT 2020, 338-345, 2020 | 18 | 2020 |
Augmenting Large Language Model Translators via Translation Memories Y Mu, A Reheman, Z Cao, Y Fan, B Li, Y Li, T Xiao, C Zhang, J Zhu Findings of ACL2023, 2023 | 17 | 2023 |
Learning Multiscale Transformer Models for Sequence Generation B Li, T Zheng, Y Jing, C Jiao, T Xiao, J Zhu ICML 2022, 2022 | 13 | 2022 |
The niutrans machine translation system for wmt18 Q Wang, B Li, J Liu, B Jiang, Z Zhang, Y Li, Y Lin, T Xiao, J Zhu WMT 2018, 528-534, 2018 | 11 | 2018 |
NiuTrans submission for CCMT19 quality estimation task Z Wang, H Liu, H Chen, K Feng, Z Wang, B Li, C Xu, T Xiao, J Zhu Machine Translation: 15th China Conference, CCMT 2019, Nanchang, China …, 2019 | 10 | 2019 |
Deliberate then generate: Enhanced prompting framework for text generation B Li, R Wang, J Guo, K Song, X Tan, H Hassan, A Menezes, T Xiao, ... arXiv preprint arXiv:2305.19835, 2023 | 9 | 2023 |
Analysis of Back-translation Methods for Low-Resource Neural Machine Translation N Xu, Y Li, C Xu, Y Li, B Li, T Xiao, J Zhu NLPCC 2019, 466-475, 2019 | 6 | 2019 |
Encoder-decoder calibration for multimodal machine translation T Tayir, L Li, B Li, J Liu, KA Lee IEEE Transactions on Artificial Intelligence, 2024 | 5 | 2024 |
ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation C Wang, H Zhou, Y Hu, Y Huo, B Li, T Liu, T Xiao, J Zhu AAAI 2024, 2023 | 5 | 2023 |
The NiuTrans Machine Translation Systems for WMT21 S Zhou, T Zhou, B Wei, Y Luo, Y Mu, Z Zhou, C Wang, X Zhou, C Lv, ... WMT 2021, 2021 | 5 | 2021 |
面向神经机器翻译的集成学习方法分析 李北, 王强, 肖桐, 姜雨帆, 张哲旸, 刘继强, 张俐, 于清 中文信息学报 33 (3), 42-51, 2019 | 5 | 2019 |