关注
Taiji Suzuki
Taiji Suzuki
在 mist.i.u-tokyo.ac.jp 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Density ratio estimation in machine learning
M Sugiyama, T Suzuki, T Kanamori
Cambridge University Press, 2012
6712012
Direct importance estimation for covariate shift adaptation
M Sugiyama, T Suzuki, S Nakajima, H Kashima, P Von Bünau, ...
Annals of the Institute of Statistical Mathematics 60, 699-746, 2008
4962008
Graph neural networks exponentially lose expressive power for node classification
K Oono, T Suzuki
arXiv preprint arXiv:1905.10947, 2019
2882019
Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality
T Suzuki
International Conference on Learning Representations, 2019
2482019
Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation
M Sugiyama, T Suzuki, T Kanamori
Annals of the Institute of Statistical Mathematics 64, 1009-1044, 2012
2122012
Statistical performance of convex tensor decomposition
R Tomioka, T Suzuki, K Hayashi, H Kashima
Advances in neural information processing systems 24, 2011
1872011
Dual averaging and proximal gradient descent for online alternating direction multiplier method
T Suzuki
International Conference on Machine Learning, 392-400, 2013
1772013
Convex tensor decomposition via structured schatten norm regularization
R Tomioka, T Suzuki
Advances in neural information processing systems 26, 2013
1642013
Approximating mutual information by maximum likelihood density ratio estimation
T Suzuki, M Sugiyama, J Sese, T Kanamori
New challenges for feature selection in data mining and knowledge discovery …, 2008
1642008
Mutual information estimation reveals global associations between stimuli and biological processes
T Suzuki, M Sugiyama, T Kanamori, J Sese
BMC bioinformatics 10, 1-12, 2009
1532009
Relative density-ratio estimation for robust distribution comparison
M Yamada, T Suzuki, T Kanamori, H Hachiya, M Sugiyama
Neural computation 25 (5), 1324-1370, 2013
1432013
Statistical analysis of kernel-based least-squares density-ratio estimation
T Kanamori, T Suzuki, M Sugiyama
Machine Learning 86, 335-367, 2012
1202012
Relative density-ratio estimation for robust distribution comparison
M Yamada, T Suzuki, T Kanamori, H Hachiya, M Sugiyama
Advances in neural information processing systems 24, 2011
1172011
Super-Linear Convergence of Dual Augmented Lagrangian Algorithm for Sparsity Regularized Estimation.
R Tomioka, T Suzuki, M Sugiyama
Journal of Machine Learning Research 12 (5), 2011
1152011
Least-squares conditional density estimation
M Sugiyama, I Takeuchi, T Suzuki, T Kanamori, H Hachiya, D Okanohara
IEICE Transactions on Information and Systems 93 (3), 583-594, 2010
932010
Density-difference estimation
M Sugiyama, T Kanamori, T Suzuki, MC Du Plessis, S Liu, I Takeuchi
Neural Computation 25 (10), 2734-2775, 2013
902013
High-dimensional asymptotics of feature learning: How one gradient step improves the representation
J Ba, MA Erdogdu, T Suzuki, Z Wang, D Wu, G Yang
Advances in Neural Information Processing Systems 35, 37932-37946, 2022
882022
Cross-domain recommendation via deep domain adaptation
H Kanagawa, H Kobayashi, N Shimizu, Y Tagami, T Suzuki
European Conference on Information Retrieval, 20-29, 2019
842019
Generalization of two-layer neural networks: An asymptotic viewpoint
J Ba, M Erdogdu, T Suzuki, D Wu, T Zhang
International conference on learning representations, 2019
822019
Fast learning rate of multiple kernel learning: Trade-off between sparsity and smoothness
T Suzuki, M Sugiyama
Artificial Intelligence and Statistics, 1152-1183, 2012
822012
系统目前无法执行此操作,请稍后再试。
文章 1–20