Density ratio estimation in machine learning M Sugiyama, T Suzuki, T Kanamori Cambridge University Press, 2012 | 671 | 2012 |
Direct importance estimation for covariate shift adaptation M Sugiyama, T Suzuki, S Nakajima, H Kashima, P Von Bünau, ... Annals of the Institute of Statistical Mathematics 60, 699-746, 2008 | 496 | 2008 |
Graph neural networks exponentially lose expressive power for node classification K Oono, T Suzuki arXiv preprint arXiv:1905.10947, 2019 | 288 | 2019 |
Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality T Suzuki International Conference on Learning Representations, 2019 | 248 | 2019 |
Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation M Sugiyama, T Suzuki, T Kanamori Annals of the Institute of Statistical Mathematics 64, 1009-1044, 2012 | 212 | 2012 |
Statistical performance of convex tensor decomposition R Tomioka, T Suzuki, K Hayashi, H Kashima Advances in neural information processing systems 24, 2011 | 187 | 2011 |
Dual averaging and proximal gradient descent for online alternating direction multiplier method T Suzuki International Conference on Machine Learning, 392-400, 2013 | 177 | 2013 |
Convex tensor decomposition via structured schatten norm regularization R Tomioka, T Suzuki Advances in neural information processing systems 26, 2013 | 164 | 2013 |
Approximating mutual information by maximum likelihood density ratio estimation T Suzuki, M Sugiyama, J Sese, T Kanamori New challenges for feature selection in data mining and knowledge discovery …, 2008 | 164 | 2008 |
Mutual information estimation reveals global associations between stimuli and biological processes T Suzuki, M Sugiyama, T Kanamori, J Sese BMC bioinformatics 10, 1-12, 2009 | 153 | 2009 |
Relative density-ratio estimation for robust distribution comparison M Yamada, T Suzuki, T Kanamori, H Hachiya, M Sugiyama Neural computation 25 (5), 1324-1370, 2013 | 143 | 2013 |
Statistical analysis of kernel-based least-squares density-ratio estimation T Kanamori, T Suzuki, M Sugiyama Machine Learning 86, 335-367, 2012 | 120 | 2012 |
Relative density-ratio estimation for robust distribution comparison M Yamada, T Suzuki, T Kanamori, H Hachiya, M Sugiyama Advances in neural information processing systems 24, 2011 | 117 | 2011 |
Super-Linear Convergence of Dual Augmented Lagrangian Algorithm for Sparsity Regularized Estimation. R Tomioka, T Suzuki, M Sugiyama Journal of Machine Learning Research 12 (5), 2011 | 115 | 2011 |
Least-squares conditional density estimation M Sugiyama, I Takeuchi, T Suzuki, T Kanamori, H Hachiya, D Okanohara IEICE Transactions on Information and Systems 93 (3), 583-594, 2010 | 93 | 2010 |
Density-difference estimation M Sugiyama, T Kanamori, T Suzuki, MC Du Plessis, S Liu, I Takeuchi Neural Computation 25 (10), 2734-2775, 2013 | 90 | 2013 |
High-dimensional asymptotics of feature learning: How one gradient step improves the representation J Ba, MA Erdogdu, T Suzuki, Z Wang, D Wu, G Yang Advances in Neural Information Processing Systems 35, 37932-37946, 2022 | 88 | 2022 |
Cross-domain recommendation via deep domain adaptation H Kanagawa, H Kobayashi, N Shimizu, Y Tagami, T Suzuki European Conference on Information Retrieval, 20-29, 2019 | 84 | 2019 |
Generalization of two-layer neural networks: An asymptotic viewpoint J Ba, M Erdogdu, T Suzuki, D Wu, T Zhang International conference on learning representations, 2019 | 82 | 2019 |
Fast learning rate of multiple kernel learning: Trade-off between sparsity and smoothness T Suzuki, M Sugiyama Artificial Intelligence and Statistics, 1152-1183, 2012 | 82 | 2012 |