A deep learning framework for neuroscience BA Richards, TP Lillicrap, P Beaudoin, Y Bengio, R Bogacz, ... Nature neuroscience 22 (11), 1761-1770, 2019 | 851 | 2019 |
Searching for modified growth patterns with tomographic surveys GB Zhao, L Pogosian, A Silvestri, J Zylberberg Physical Review D—Particles, Fields, Gravitation, and Cosmology 79 (8), 083513, 2009 | 327 | 2009 |
A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields J Zylberberg, JT Murphy, MR DeWeese PLoS computational biology 7 (10), e1002250, 2011 | 241 | 2011 |
Mechanisms of persistent activity in cortical circuits: possible neural substrates for working memory J Zylberberg, BW Strowbridge Annual review of neuroscience 40 (1), 603-627, 2017 | 181 | 2017 |
Bismuth Aluminate: A New High-TC Lead-Free Piezo-/ferroelectric J Zylberberg, A A. Belik, E Takayama-Muromachi, ZG Ye Chemistry of Materials 19 (26), 6385-6390, 2007 | 159 | 2007 |
Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1 PD King, J Zylberberg, MR DeWeese Journal of Neuroscience 33 (13), 5475-5485, 2013 | 151 | 2013 |
Direction-selective circuits shape noise to ensure a precise population code J Zylberberg, J Cafaro, MH Turner, E Shea-Brown, F Rieke Neuron 89 (2), 369-383, 2016 | 144 | 2016 |
Cosmological tests of general relativity with future tomographic surveys GB Zhao, L Pogosian, A Silvestri, J Zylberberg Physical Review Letters 103 (24), 241301, 2009 | 126 | 2009 |
Using deep learning to probe the neural code for images in primary visual cortex WF Kindel, ED Christensen, J Zylberberg Journal of vision 19 (4), 29-29, 2019 | 83* | 2019 |
The sign rule and beyond: boundary effects, flexibility, and noise correlations in neural population codes Y Hu, J Zylberberg, E Shea-Brown PLoS computational biology 10 (2), e1003469, 2014 | 74 | 2014 |
Robust information propagation through noisy neural circuits J Zylberberg, A Pouget, PE Latham, E Shea-Brown PLoS computational biology 13 (4), e1005497, 2017 | 57 | 2017 |
The role of untuned neurons in sensory information coding J Zylberberg BioRxiv, 134379, 2017 | 39 | 2017 |
Improved object recognition using neural networks trained to mimic the brain’s statistical properties C Federer, H Xu, A Fyshe, J Zylberberg Neural Networks 131, 103-114, 2020 | 38 | 2020 |
The language of the brain: real-world neural population codes JA Pruszynski, J Zylberberg Current opinion in neurobiology 58, 30-36, 2019 | 36 | 2019 |
Sparse coding models can exhibit decreasing sparseness while learning sparse codes for natural images J Zylberberg, MR DeWeese PLoS computational biology 9 (8), e1003182, 2013 | 35 | 2013 |
Improved dielectric properties of bismuth-doped LaAlO3 J Zylberberg, ZG Ye Journal of applied physics 100 (8), 2006 | 34 | 2006 |
Triplet correlations among similarly tuned cells impact population coding NA Cayco-Gajic, J Zylberberg, E Shea-Brown Frontiers in computational neuroscience 9, 57, 2015 | 33 | 2015 |
Improvements of the DRAGON recoil separator at ISAC C Vockenhuber, L Buchmann, J Caggiano, AA Chen, JM D’Auria, ... Nuclear Instruments and Methods in Physics Research Section B: Beam …, 2008 | 32 | 2008 |
Learning from unexpected events in the neocortical microcircuit CJ Gillon, JE Pina, JA Lecoq, R Ahmed, YN Billeh, S Caldejon, ... BioRxiv, 2021.01. 15.426915, 2021 | 29 | 2021 |
Temperature dependence of the capacitance of a ferroelectric material J Bechhoefer, Y Deng, J Zylberberg, C Lei, ZG Ye American Journal of Physics 75 (11), 1046-1053, 2007 | 26 | 2007 |