关注
Silas Ørting
Silas Ørting
Post Doc, Computer Science, University of Copenhagen
在 di.ku.dk 的电子邮件经过验证
标题
引用次数
引用次数
年份
A survey of crowdsourcing in medical image analysis
S Ørting, A Doyle, A van Hilten, M Hirth, O Inel, CR Madan, P Mavridis, ...
arXiv preprint arXiv:1902.09159, 2019
782019
Deep learning from label proportions for emphysema quantification
G Bortsova, F Dubost, S Ørting, I Katramados, L Hogeweg, L Thomsen, ...
Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st …, 2018
332018
Classification of volumetric images using multi-instance learning and extreme value theorem
R Tennakoon, G Bortsova, S Ørting, AK Gostar, MMW Wille, Z Saghir, ...
IEEE transactions on medical imaging 39 (4), 854-865, 2019
212019
Detecting emphysema with multiple instance learning
SN Ørting, J Petersen, LH Thomsen, MMW Wille, M De Bruijne
2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018 …, 2018
152018
Artificial intelligence enabled ECG screening for left ventricular systolic dysfunction: a systematic review
LV Bjerkén, SN Rønborg, MT Jensen, SN Ørting, OW Nielsen
Heart Failure Reviews 28 (2), 419-430, 2023
142023
A cross-center smoothness prior for variational Bayesian brain tissue segmentation
WM Kouw, SN Ørting, J Petersen, KS Pedersen, M de Bruijne
Information Processing in Medical Imaging: 26th International Conference …, 2019
122019
Training shortest-path tractography: Automatic learning of spatial priors
N Kasenburg, M Liptrot, NL Reislev, SN Ørting, M Nielsen, E Garde, ...
NeuroImage 130, 63-76, 2016
122016
Crowdsourced emphysema assessment
SN Ørting, V Cheplygina, J Petersen, LH Thomsen, MMW Wille, ...
Intravascular Imaging and Computer Assisted Stenting, and Large-Scale …, 2017
92017
Quantifying emphysema extent from weakly labeled CT scans of the lungs using label proportions learning
SN Ørting, J Petersen, MMW Wille, LH Thomsen, M de Bruijne
The Sixth International Workshop on Pulmonary Image Analysis, 31-42, 2016
92016
Locally orderless tensor networks for classifying two-and three-dimensional medical images
R Selvan, S Ørting, EB Dam
arXiv preprint arXiv:2009.12280, 2020
82020
Multi-layered tensor networks for image classification
R Selvan, S Ørting, EB Dam
arXiv preprint arXiv:2011.06982, 2020
42020
Learning to quantify emphysema extent: What labels do we need?
SN Ørting, J Petersen, LH Thomsen, MMW Wille, M de Bruijne
IEEE Journal of Biomedical and Health Informatics 24 (4), 1149-1159, 2019
32019
Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans
SN Ørting, J Petersen, V Cheplygina, LH Thomsen, MMW Wille, ...
arXiv preprint arXiv:1806.07131, 2018
22018
Morphology on categorical distributions
SN Ørting, HJT Stephensen, J Sporring
Journal of Mathematical Imaging and Vision 65 (6), 861-873, 2023
12023
Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans
S Nyboe Ørting, J Petersen, V Cheplygina, LH Thomsen, MMW Wille, ...
Intravascular Imaging and Computer Assisted Stenting and Large-Scale …, 2018
12018
A small note on variation in segmentation annotations
SN Ørting
arXiv preprint arXiv:2012.01975, 2020
2020
A small note on variation in segmentation annotations
S Nyboe Ørting
arXiv e-prints, arXiv: 2012.01975, 2020
2020
Morphology on categorical distributions
S Nyboe Ørting, HJ Teglbjærg Stephensen, J Sporring
arXiv e-prints, arXiv: 2012.07315, 2020
2020
Learning to quantify emphysema extent: What labels do we need?
S Nyboe Ørting, J Petersen, LH Thomsen, MMW Wille, M de Bruijne
arXiv e-prints, arXiv: 1810.07433, 2018
2018
Assessing emphysema in CT scans of the lungs
SN Ørting
系统目前无法执行此操作,请稍后再试。
文章 1–20