关注
Giulia DeSalvo
Giulia DeSalvo
New York University
在 GOOGLE.COM 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Hyperband: A novel bandit-based approach to hyperparameter optimization
L Li, K Jamieson, G DeSalvo, A Rostamizadeh, A Talwalkar
Journal of Machine Learning Research 18 (185), 1-52, 2018
3415*2018
Learning with rejection
C Cortes, G DeSalvo, M Mohri
Algorithmic Learning Theory: 27th International Conference, ALT 2016, Bari …, 2016
3002016
Hyperband: Bandit-based Configuration Evaluation for Hyperparameter Optimization
AT Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh
ICLR, 2017
172*2017
Efficient hyperparameter optimization and infinitely many armed bandits
L Li, KG Jamieson, G DeSalvo, A Rostamizadeh, A Talwalkar
CoRR, abs/1603.06560 16, 2016
1532016
Batch active learning at scale
G Citovsky, G DeSalvo, C Gentile, L Karydas, A Rajagopalan, ...
Advances in Neural Information Processing Systems 34, 11933-11944, 2021
1352021
Boosting with abstention
C Cortes, G DeSalvo, M Mohri
Advances in Neural Information Processing Systems 29, 2016
1302016
Online learning with abstention
C Cortes, G DeSalvo, C Gentile, M Mohri, S Yang
international conference on machine learning, 1059-1067, 2018
492018
Region-based active learning
C Cortes, G DeSalvo, C Gentile, M Mohri, N Zhang
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
352019
Precise measurement of laser power using an optomechanical system
K Agatsuma, D Friedrich, S Ballmer, G DeSalvo, S Sakata, E Nishida, ...
Optics express 22 (2), 2013-2030, 2014
332014
Active learning with disagreement graphs
C Cortes, G DeSalvo, M Mohri, N Zhang, C Gentile
International Conference on Machine Learning, 1379-1387, 2019
262019
Learning with deep cascades
G DeSalvo, M Mohri, U Syed
Algorithmic Learning Theory: 26th International Conference, ALT 2015, Banff …, 2015
222015
Discrepancy-based algorithms for non-stationary rested bandits
C Cortes, G DeSalvo, V Kuznetsov, M Mohri, S Yang
arXiv preprint arXiv:1710.10657, 2017
202017
Theory and algorithms for learning with rejection in binary classification
C Cortes, G DeSalvo, M Mohri
Annals of Mathematics and Artificial Intelligence 92 (2), 277-315, 2024
162024
Online learning with sleeping experts and feedback graphs
C Cortes, G DeSalvo, C Gentile, M Mohri, S Yang
International Conference on Machine Learning, 1370-1378, 2019
162019
Adaptive region-based active learning
C Cortes, G DeSalvo, C Gentile, M Mohri, N Zhang
International Conference on Machine Learning, 2144-2153, 2020
152020
Online learning with dependent stochastic feedback graphs
C Cortes, G DeSalvo, C Gentile, M Mohri, N Zhang
International Conference on Machine Learning, 2154-2163, 2020
132020
Random composite forests
G DeSalvo, M Mohri
Proceedings of the AAAI Conference on Artificial Intelligence 30 (1), 2016
112016
Understanding the effects of batching in online active learning
K Amin, C Cortes, G DeSalvo, A Rostamizadeh
International Conference on Artificial Intelligence and Statistics, 3482-3492, 2020
102020
Firebolt: Weak supervision under weaker assumptions
Z Kuang, CG Arachie, B Liang, P Narayana, G DeSalvo, MS Quinn, ...
International Conference on Artificial Intelligence and Statistics, 8214-8259, 2022
92022
Agile modeling: From concept to classifier in minutes
O Stretcu, E Vendrow, K Hata, K Viswanathan, V Ferrari, S Tavakkol, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023
82023
系统目前无法执行此操作,请稍后再试。
文章 1–20