Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods D Lim, F Hohne, X Li, SL Huang, V Gupta, O Bhalerao, SN Lim Advances in Neural Information Processing Systems 34, 20887-20902, 2021 | 266 | 2021 |
Equivariant subgraph aggregation networks B Bevilacqua, F Frasca, D Lim, B Srinivasan, C Cai, G Balamurugan, ... International Conference on Learning Representations, 2022 | 171 | 2022 |
Sign and basis invariant networks for spectral graph representation learning D Lim, J Robinson, L Zhao, T Smidt, S Sra, H Maron, S Jegelka arXiv preprint arXiv:2202.13013 4, 2022 | 124 | 2022 |
New Benchmarks for Learning on Non-Homophilous Graphs D Lim, X Li, F Hohne, SN Lim https://arxiv.org/abs/2104.01404, 2021 | 91 | 2021 |
Neural manifold ordinary differential equations A Lou, D Lim, I Katsman, L Huang, Q Jiang, SN Lim, CM De Sa Advances in Neural Information Processing Systems 33, 17548-17558, 2020 | 72 | 2020 |
Graph inductive biases in transformers without message passing L Ma, C Lin, D Lim, A Romero-Soriano, PK Dokania, M Coates, P Torr, ... International Conference on Machine Learning, 23321-23337, 2023 | 56 | 2023 |
The power of recursion in graph neural networks for counting substructures B Tahmasebi, D Lim, S Jegelka International Conference on Artificial Intelligence and Statistics, 11023-11042, 2023 | 30* | 2023 |
Equivariant polynomials for graph neural networks O Puny, D Lim, B Kiani, H Maron, Y Lipman International Conference on Machine Learning, 28191-28222, 2023 | 25 | 2023 |
Doubly Stochastic Subspace Clustering D Lim, R Vidal, B Haeffele arXiv preprint arXiv:2011.14859, 2020 | 18 | 2020 |
Equivariant manifold flows I Katsman, A Lou, D Lim, Q Jiang, SN Lim, CM De Sa Advances in Neural Information Processing Systems 34, 10600-10612, 2021 | 17 | 2021 |
Expertise and dynamics within crowdsourced musical knowledge curation: A case study of the genius platform D Lim, AR Benson Proceedings of the International AAAI Conference on Web and Social Media 15 …, 2021 | 17 | 2021 |
Graph metanetworks for processing diverse neural architectures D Lim, H Maron, MT Law, J Lorraine, J Lucas arXiv preprint arXiv:2312.04501, 2023 | 11 | 2023 |
Expressive sign equivariant networks for spectral geometric learning D Lim, J Robinson, S Jegelka, H Maron Advances in Neural Information Processing Systems 36, 2024 | 10 | 2024 |
Structuring representation geometry with rotationally equivariant contrastive learning S Gupta, J Robinson, D Lim, S Villar, S Jegelka arXiv preprint arXiv:2306.13924, 2023 | 8 | 2023 |
The doubly stochastic single eigenvalue problem: A computational approach A Harlev, CR Johnson, D Lim Experimental Mathematics 31 (3), 936-945, 2022 | 7 | 2022 |
Understanding doubly stochastic clustering T Ding, D Lim, R Vidal, BD Haeffele International Conference on Machine Learning, 5153-5165, 2022 | 7 | 2022 |
Spectra of convex hulls of matrix groups E Jankowski, CR Johnson, D Lim Linear Algebra and its Applications 593, 74-89, 2020 | 4 | 2020 |
Future Directions in Foundations of Graph Machine Learning C Morris, N Dym, H Maron, İİ Ceylan, F Frasca, R Levie, D Lim, ... arXiv preprint arXiv:2402.02287, 2024 | 1 | 2024 |
Positional Encodings as Group Representations: A Unified Framework D Lim, H Lawrence, NT Huang, EH Thiede | 1 | 2023 |
Position: Future Directions in the Theory of Graph Machine Learning C Morris, F Frasca, N Dym, H Maron, II Ceylan, R Levie, D Lim, ... Forty-first International Conference on Machine Learning, 0 | 1 | |