关注
George Em Karniadakis
George Em Karniadakis
The Charles Pitts Robinson and John Palmer Barstow Professor of Applied Mathematics and Engineering
在 brown.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
M Raissi, P Perdikaris, GE Karniadakis
Journal of Computational physics 378, 686-707, 2019
102802019
The Wiener--Askey polynomial chaos for stochastic differential equations
D Xiu, GE Karniadakis
SIAM journal on scientific computing 24 (2), 619-644, 2002
58132002
Microflows and nanoflows: fundamentals and simulation
G Karniadakis, A Beskok, N Aluru
Springer Science & Business Media, 2006
4074*2006
Physics-informed machine learning
GE Karniadakis, IG Kevrekidis, L Lu, P Perdikaris, S Wang, L Yang
Nature Reviews Physics 3 (6), 422-440, 2021
38512021
Spectral/hp element methods for computational fluid dynamics
G Karniadakis, SJ Sherwin
Oxford University Press, USA, 2005
35162005
Discontinuous Galerkin methods: theory, computation and applications
B Cockburn, GE Karniadakis, CW Shu
Springer Science & Business Media, 2012
3012*2012
High-order splitting methods for the incompressible Navier-Stokes equations
GE Karniadakis, M Israeli, SA Orszag
Journal of computational physics 97 (2), 414-443, 1991
17881991
Modeling uncertainty in flow simulations via generalized polynomial chaos
D Xiu, GE Karniadakis
Journal of computational physics 187 (1), 137-167, 2003
17762003
DeepXDE: A deep learning library for solving differential equations
L Lu, X Meng, Z Mao, GE Karniadakis
SIAM review 63 (1), 208-228, 2021
16712021
Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
L Lu, P Jin, G Pang, Z Zhang, GE Karniadakis
Nature machine intelligence 3 (3), 218-229, 2021
16112021
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
M Raissi, A Yazdani, GE Karniadakis
Science 367 (6481), 1026-1030, 2020
15222020
Report: a model for flows in channels, pipes, and ducts at micro and nano scales
A Beskok, GE Karniadakis
Microscale thermophysical engineering 3 (1), 43-77, 1999
15181999
Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations
M Raissi, P Perdikaris, GE Karniadakis
arXiv preprint arXiv:1711.10561, 2017
14412017
Hidden physics models: Machine learning of nonlinear partial differential equations
M Raissi, GE Karniadakis
Journal of Computational Physics 357, 125-141, 2018
12782018
Physics-informed neural networks (PINNs) for fluid mechanics: A review
S Cai, Z Mao, Z Wang, M Yin, GE Karniadakis
Acta Mechanica Sinica 37 (12), 1727-1738, 2021
9612021
Physics-informed neural networks for high-speed flows
Z Mao, AD Jagtap, GE Karniadakis
Computer Methods in Applied Mechanics and Engineering 360, 112789, 2020
9062020
NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations
X Jin, S Cai, H Li, GE Karniadakis
Journal of Computational Physics 426, 109951, 2021
8642021
Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
AD Jagtap, K Kawaguchi, GE Karniadakis
Journal of Computational Physics 404, 109136, 2020
819*2020
Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos
D Xiu, GE Karniadakis
Computer methods in applied mechanics and engineering 191 (43), 4927-4948, 2002
7352002
An adaptive multi-element generalized polynomial chaos method for stochastic differential equations
X Wan, GE Karniadakis
Journal of Computational Physics 209 (2), 617-642, 2005
7312005
系统目前无法执行此操作,请稍后再试。
文章 1–20