Infeasibility and structural bias in differential evolution F Caraffini, AV Kononova, D Corne Information Sciences 496, 161-179, 2019 | 98 | 2019 |
Deep multiagent reinforcement learning: Challenges and directions A Wong, T Bäck, AV Kononova, A Plaat Artificial Intelligence Review 56 (6), 5023-5056, 2023 | 96 | 2023 |
Structural bias in population-based algorithms AV Kononova, DW Corne, P De Wilde, V Shneer, F Caraffini Information Sciences 298, 468-490, 2015 | 82 | 2015 |
Differential evolution outside the box AV Kononova, F Caraffini, T Bäck Information Sciences 581, 587-604, 2021 | 32 | 2021 |
Structural bias in differential evolution: A preliminary study F Caraffini, AV Kononova AIP Conference Proceedings 2070 (1), 2019 | 31 | 2019 |
Simple scheduled memetic algorithm for inverse problems in higher dimensions: Application to chemical kinetics AV Kononova, DB Ingham, M Pourkashanian 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on …, 2008 | 24 | 2008 |
Prudent-daring vs tolerant survivor selection schemes in control design of electric drives F Neri, GL Cascella, N Salvatore, AV Kononova, G Acciani Applications of Evolutionary Computing: EvoWorkshops 2006: EvoBIO, EvoCOMNET …, 2006 | 24 | 2006 |
Fitness diversity based adaptive memetic algorithm for solving inverse problems of chemical kinetics AV Kononova, KJ Hughes, M Pourkashanian, DB Ingham 2007 IEEE Congress on Evolutionary Computation, 2366-2373, 2007 | 23 | 2007 |
Bias: A toolbox for benchmarking structural bias in the continuous domain D Vermetten, B van Stein, F Caraffini, LL Minku, AV Kononova IEEE Transactions on Evolutionary Computation 26 (6), 1380-1393, 2022 | 21 | 2022 |
Differential evolution with scale factor local search for large scale problems A Caponio, AV Kononova, F Neri Computational intelligence in expensive optimization problems, 297-323, 2010 | 20 | 2010 |
Distinguishing normal, neuropathic and myopathic EMG with an automated machine learning approach MR Tannemaat, M Kefalas, VJ Geraedts, L Remijn-Nelissen, ... Clinical Neurophysiology 146, 49-54, 2023 | 19 | 2023 |
Can compact optimisation algorithms be structurally biased? AV Kononova, F Caraffini, H Wang, T Bäck International Conference on Parallel Problem Solving from Nature, 229-242, 2020 | 19 | 2020 |
Evolutionary algorithms for parameter optimization—thirty years later THW Bäck, AV Kononova, B van Stein, H Wang, KA Antonov, ... Evolutionary Computation 31 (2), 81-122, 2023 | 18 | 2023 |
Emergence of Structural Bias in Differential Evolution B van Stein, F Caraffini, AV Kononova The Genetic and Evolutionary Computation Conference (GECCO 2021), 1234-1242, 2021 | 15* | 2021 |
BBOB instance analysis: Landscape properties and algorithm performance across problem instances FX Long, D Vermetten, B van Stein, AV Kononova International Conference on the Applications of Evolutionary Computation …, 2023 | 14 | 2023 |
Can single solution optimisation methods be structurally biased? AV Kononova, F Caraffini, H Wang, T Bäck 2020 IEEE Congress on Evolutionary Computation (CEC), 1-9, 2020 | 14 | 2020 |
Modular differential evolution D Vermetten, F Caraffini, AV Kononova, T Bäck Proceedings of the Genetic and Evolutionary Computation Conference, 864-872, 2023 | 13 | 2023 |
Analysis of structural bias in differential evolution configurations D Vermetten, B van Stein, AV Kononova, F Caraffini Differential evolution: From theory to practice, 1-22, 2022 | 13 | 2022 |
The Importance of Being Constrained: Dealing with Infeasible Solutions in Differential Evolution and Beyond AV Kononova, D Vermetten, F Caraffini, MA Mitran, D Zaharie Evolutionary Computation, 1-46, 2023 | 12 | 2023 |
Is there anisotropy in structural bias? D Vermetten, AV Kononova, F Caraffini, H Wang, T Bäck The Genetic and Evolutionary Computation Conference (GECCO 2021), 1243-1250, 2021 | 10 | 2021 |