Machine-learning-assisted materials discovery using failed experiments P Raccuglia, KC Elbert, PDF Adler, C Falk, MB Wenny, A Mollo, M Zeller, ... Nature 533 (7601), 73-76, 2016 | 1445 | 2016 |
Machine learning: new ideas and tools in environmental science and engineering S Zhong, K Zhang, M Bagheri, JG Burken, A Gu, B Li, X Ma, BL Marrone, ... Environmental science & technology 55 (19), 12741-12754, 2021 | 509 | 2021 |
Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications J Schrier, DO Demchenko, AP Alivisatos Nano letters 7 (8), 2377-2382, 2007 | 495 | 2007 |
From computational discovery to experimental characterization of a high hole mobility organic crystal AN Sokolov, S Atahan-Evrenk, R Mondal, HB Akkerman, ... Nature communications 2 (1), 437, 2011 | 384 | 2011 |
Helium separation using porous graphene membranes J Schrier The Journal of Physical Chemistry Letters 1 (15), 2284-2287, 2010 | 278 | 2010 |
Autonomous experimentation systems for materials development: A community perspective E Stach, B DeCost, AG Kusne, J Hattrick-Simpers, KA Brown, KG Reyes, ... Matter 4 (9), 2702-2726, 2021 | 202 | 2021 |
Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis X Jia, A Lynch, Y Huang, M Danielson, I Lang’at, A Milder, AE Ruby, ... Nature 573 (7773), 251-255, 2019 | 187 | 2019 |
Carbon dioxide separation with a two-dimensional polymer membrane J Schrier ACS applied materials & interfaces 4 (7), 3745-3752, 2012 | 159 | 2012 |
Robot-accelerated perovskite investigation and discovery Z Li, MA Najeeb, L Alves, AZ Sherman, V Shekar, P Cruz Parrilla, ... Chemistry of Materials 32 (13), 5650-5663, 2020 | 156* | 2020 |
Helium tunneling through nitrogen-functionalized graphene pores: pressure-and temperature-driven approaches to isotope separation AW Hauser, J Schrier, P Schwerdtfeger The Journal of Physical Chemistry C 116 (19), 10819-10827, 2012 | 129 | 2012 |
Fluorinated and nanoporous graphene materials as sorbents for gas separations J Schrier ACS Applied Materials & Interfaces 3 (11), 4451-4458, 2011 | 129 | 2011 |
Electronic Transport, Structure, and Energetics of Endohedral Gd@C82 Metallofullerenes L Senapati, J Schrier, KB Whaley Nano Letters 4 (11), 2073-2078, 2004 | 117 | 2004 |
Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods and Artificial Intelligence. A Aspuru-Guzik, K Persson Mission Innovation, 2018 | 101 | 2018 |
Theoretical Characterization of the Air-Stable, High-Mobility Dinaphtho[2,3-b:2′3′-f]thieno[3,2-b]-thiophene Organic Semiconductor RS Sánchez-Carrera, S Atahan, J Schrier, A Aspuru-Guzik The Journal of Physical Chemistry C 114 (5), 2334-2340, 2010 | 95 | 2010 |
Experiment Specification, Capture and Laboratory Automation Technology (ESCALATE): a software pipeline for automated chemical experimentation and data management IM Pendleton, G Cattabriga, Z Li, MA Najeeb, SA Friedler, AJ Norquist, ... MRS Communications 9 (3), 846-859, 2019 | 88 | 2019 |
Mechanical and electrical properties of CdTe tetrapods studied by atomic force microscopy L Fang, JY Park, Y Cui, P Alivisatos, J Shcrier, B Lee, LW Wang, ... The Journal of chemical physics 127 (18), 2007 | 84 | 2007 |
Thermally-driven isotope separation across nanoporous graphene J Schrier, J McClain Chemical Physics Letters 521, 118-124, 2012 | 82 | 2012 |
Noble Gas Separation using PG-ESX (X = 1, 2, 3) Nanoporous Two-Dimensional Polymers AM Brockway, J Schrier The Journal of Physical Chemistry C 117 (1), 393-402, 2013 | 68 | 2013 |
Bio-Inspired electroactive organic molecules for aqueous redox flow batteries. 1. Thiophenoquinones SD Pineda Flores, GC Martin-Noble, RL Phillips, J Schrier Journal of Physical Chemistry C 119 (38), 21800-21809, 2015 | 67 | 2015 |
Electronic structure of nanocrystal quantum-dot quantum wells J Schrier, LW Wang Physical Review B—Condensed Matter and Materials Physics 73 (24), 245332, 2006 | 54 | 2006 |