Solving systems of polynomial inequalities in subexponential time. NV D.Grigoriev J. Symp. Comput 5, 37-64, 1988 | 478 | 1988 |
Isomorphism of graphs with bounded eigenvalue multiplicity. DM L.Babai, D.Grigoriev 14 ACM Symp. Th. Comput., 310-324, 1982 | 275* | 1982 |
Complexity of deciding Tarski algebra. D Grigoriev J. Symp. Comput 5, 65-108, 1988 | 267 | 1988 |
Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity D Grigoriev Theoretical Computer Science 259 (1-2), 613-622, 2001 | 220 | 2001 |
Complexity of quantifier elimination in the theory of algebraically closed fields. DG A.Chistov Lecture Notes Computer Science 176, 17-31, 1984 | 211 | 1984 |
Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields DY Grigoriev, M Karpinski, MF Singer SIAM Journal on Computing 19 (6), 1059-1063, 1990 | 178 | 1990 |
The matching problem for bipartite graphs with polynomially bounded permanents is in NC DY Grigoriev, M Karpinski 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), 166-172, 1987 | 165 | 1987 |
Linear Gaps Between Degrees for the Polynomial Calculus Modulo Distinct Primes. TP D.Grigoriev, S.Buss, R.Impagliazzo J. Comput. Syst. Sci. 62, 267-289, 2001 | 144* | 2001 |
Complexity of semi-algebraic proofs D Grigoriev, EA Hirsch, DV Pasechnik STACS 2002: 19th Annual Symposium on Theoretical Aspects of Computer Science …, 2002 | 129 | 2002 |
An exponential lower bound for depth 3 arithmetic circuits D Grigoriev, M Karpinski Proceedings of the thirtieth annual ACM symposium on Theory of computing …, 1998 | 120 | 1998 |
Complexity of factoring and GCD calculating of ordinary linear differential operators. D Grigoriev J. Symp. Comput. 10 (1), 7-37, 1990 | 120* | 1990 |
Exponential Complexity Lower Bounds for Depth 3 Arithmetic Circuits in Algebras of Functions over Finite Fields. AR D.Grigoriev Appl.Algebra in Eng.,Communic.,Comput, 465-487, 2000 | 113* | 2000 |
Exponential Complexity Lower Bounds for Depth 3 Arithmetic Circuits in Algebras of Functions over Finite Fields. AR D.Grigoriev Symp. Found.Comput.Sci, 269-278, 1998 | 113* | 1998 |
Complexity of Null-and Positivstellensatz proofs D Grigoriev, N Vorobjov Annals of Pure and Applied Logic 113 (1-3), 153-160, 2001 | 108 | 2001 |
Counting connected components of a semialgebraic set in subexponential time. NV D.Grigoriev Computational Complexity 2 (2), 133-186, 1992 | 102 | 1992 |
Polynomial factoring over a finite field and solving systems of algebraic equations. D Grigoriev J. Soviet Math 34, 1762-1803, 1986 | 102* | 1986 |
Subexponential time solving systems of algebraic equations AL Chistov, DY Grigoriev LOMI preprint E-9-83, E-10-83, Steklov Institute, Leningrad, 1983 | 94 | 1983 |
Complexity of Positivstellensatz proofs for the knapsack D Grigoriev computational complexity 10, 139-154, 2001 | 92 | 2001 |
Polynomial-time factoring of the multivariable polynomials over a global field. DG A.Chistov Preprint LOMI 82 (E-5), 1-39, 1982 | 86* | 1982 |
Tropical cryptography D Grigoriev, V Shpilrain Communications in Algebra 42 (6), 2624-2632, 2014 | 85 | 2014 |