关注
Aishwarya Agrawal
Aishwarya Agrawal
University of Montreal, Mila, Google DeepMind
在 mila.quebec 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Vqa: Visual question answering
S Antol, A Agrawal, J Lu, M Mitchell, D Batra, CL Zitnick, D Parikh
Proceedings of the IEEE international conference on computer vision, 2425-2433, 2015
58922015
Don't just assume; look and answer: Overcoming priors for visual question answering
A Agrawal, D Batra, D Parikh, A Kembhavi
Proceedings of the IEEE conference on computer vision and pattern …, 2018
6632018
Visual storytelling
TH Huang, F Ferraro, N Mostafazadeh, I Misra, A Agrawal, J Devlin, ...
Proceedings of the 2016 conference of the North American chapter of the …, 2016
4462016
Analyzing the behavior of visual question answering models
A Agrawal, D Batra, D Parikh
arXiv preprint arXiv:1606.07356, 2016
3592016
Overcoming language priors in visual question answering with adversarial regularization
S Ramakrishnan, A Agrawal, S Lee
Advances in Neural Information Processing Systems 31, 2018
2322018
C-vqa: A compositional split of the visual question answering (vqa) v1. 0 dataset
A Agrawal, A Kembhavi, D Batra, D Parikh
arXiv preprint arXiv:1704.08243, 2017
802017
Measuring machine intelligence through visual question answering
CL Zitnick, A Agrawal, S Antol, M Mitchell, D Batra, D Parikh
AI Magazine 37 (1), 63-72, 2016
392016
Resolving language and vision ambiguities together: Joint segmentation & prepositional attachment resolution in captioned scenes
G Christie, A Laddha, A Agrawal, S Antol, Y Goyal, K Kochersberger, ...
arXiv preprint arXiv:1604.02125, 2016
342016
Mapl: Parameter-efficient adaptation of unimodal pre-trained models for vision-language few-shot prompting
O Mañas, P Rodriguez, S Ahmadi, A Nematzadeh, Y Goyal, A Agrawal
arXiv preprint arXiv:2210.07179, 2022
272022
Reassessing evaluation practices in visual question answering: A case study on out-of-distribution generalization
A Agrawal, I Kajić, E Bugliarello, E Davoodi, A Gergely, P Blunsom, ...
arXiv preprint arXiv:2205.12191, 2022
172022
Measuring progress in fine-grained vision-and-language understanding
E Bugliarello, L Sartran, A Agrawal, LA Hendricks, A Nematzadeh
arXiv preprint arXiv:2305.07558, 2023
162023
Resolving vision and language ambiguities together: Joint segmentation & prepositional attachment resolution in captioned scenes
G Christie, A Laddha, A Agrawal, S Antol, Y Goyal, K Kochersberger, ...
Computer Vision and Image Understanding 163, 101-112, 2017
132017
Visual storytelling
F Ferraro, N Mostafazadeh, I Misra, A Agrawal, J Devlin, R Girshick, X He, ...
arXiv preprint arXiv:1604.03968, 2016
112016
Improving automatic vqa evaluation using large language models
O Mañas, B Krojer, A Agrawal
Proceedings of the AAAI Conference on Artificial Intelligence 38 (5), 4171-4179, 2024
62024
Visual question answering
S Antol, A Agrawal, J Lu, M Mitchell, D Batra, CL Zitnick, DP Vqa
Proceedings of the IEEE International Conference on Computer Vision, 2022
42022
Improving text-to-image consistency via automatic prompt optimization
O Mañas, P Astolfi, M Hall, C Ross, J Urbanek, A Williams, A Agrawal, ...
arXiv preprint arXiv:2403.17804, 2024
32024
An examination of the robustness of reference-free image captioning evaluation metrics
S Ahmadi, A Agrawal
arXiv preprint arXiv:2305.14998, 2023
32023
Vision-language pretraining: Current trends and the future
A Agrawal, D Teney, A Nematzadeh
Proceedings of the 60th Annual Meeting of the Association for Computational …, 2022
32022
VQA: Visual Question Answering www. visualqa. org
A Agrawal, J Lu, S Antol, M Mitchell, CL Zitnick, D Batra, D Parikh
Proceedings of the IEEE international conference on computer vision, 2425-2433, 2015
32015
Generating diverse programs with instruction conditioned reinforced adversarial learning
A Agrawal, M Malinowski, F Hill, A Eslami, O Vinyals, T Kulkarni
arXiv preprint arXiv:1812.00898, 2018
22018
系统目前无法执行此操作,请稍后再试。
文章 1–20