PyOD: A Python Toolbox for Scalable Outlier Detection Y Zhao, Z Nasrullah, Z Li Journal of Machine Learning Research (JMLR) 20, 1-7, 2019 | 899 | 2019 |
Diffusion Models: A Comprehensive Survey of Methods and Applications L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao, W Zhang, B Cui, ... ACM Computing Surveys, 2023 | 823 | 2023 |
COPOD: copula-based outlier detection Z Li, Y Zhao, N Botta, C Ionescu, X Hu 2020 IEEE International Conference on Data Mining (ICDM), 1118-1123, 2020 | 323 | 2020 |
ADBench: Anomaly Detection Benchmark S Han, X Hu, H Huang, M Jiang, Y Zhao Advances in Neural Information Processing Systems (NeurIPS) 35, 2022 | 245 | 2022 |
Ecod: Unsupervised outlier detection using empirical cumulative distribution functions Y Zhao*, Z Li*, X Hu, N Botta, C Ionescu, G Chen IEEE Transactions on Knowledge and Data Engineering, 2022 | 233 | 2022 |
Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development K Huang*, T Fu*, W Gao*, Y Zhao, Y Roohani, J Leskovec, CW Coley, ... Advances in Neural Information Processing Systems (NeurIPS) 34, 2021 | 228 | 2021 |
Employee Turnover Prediction with Machine Learning: A Reliable Approach Y Zhao, M Hryniewicki, F Cheng, X Fu, Boyang, Zhu Intelligent Systems Conference, 737-758, 2018 | 192 | 2018 |
XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning Y Zhao, M Hryniewicki International Joint Conference on Neural Networks (IJCNN), 2018 | 167 | 2018 |
LSCP: Locally selective combination in parallel outlier ensembles Y Zhao, Z Nasrullah, MK Hryniewicki, Z Li SIAM International Conference on Data Mining (SDM), 585-593, 2019 | 165 | 2019 |
Revisiting Time Series Outlier Detection: Definitions and Benchmarks KH Lai, D Zha, J Xu, Y Zhao, G Wang, X Hu Advances in Neural Information Processing Systems (NeurIPS) 34, 2021 | 147 | 2021 |
Automatic Unsupervised Outlier Model Selection Y Zhao, R Rossi, L Akoglu Advances in Neural Information Processing Systems (NeurIPS) 34, 2021 | 92* | 2021 |
Artificial intelligence foundation for therapeutic science K Huang, T Fu, W Gao, Y Zhao, Y Roohani, J Leskovec, CW Coley, ... Nature Chemical Biology 18 (10), 1033-1036, 2022 | 91 | 2022 |
Trustllm: Trustworthiness in large language models L Sun, Y Huang, H Wang, S Wu, Q Zhang, C Gao, Y Huang, W Lyu, ... International Conference on Machine Learning (ICML), 2024 | 79 | 2024 |
TODS: An Automated Time Series Outlier Detection System KH Lai, D Zha, G Wang, J Xu, Y Zhao, D Kumar, Y Chen, P Zumkhawaka, ... Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI), 2021 | 72 | 2021 |
SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier Detection Y Zhao*, X Hu*, C Cheng, C Wang, C Wan, W Wang, J Yang, H Bai, Z Li, ... Proceedings of Machine Learning and Systems (MLSys) 3, 2021 | 71* | 2021 |
Music Artist Classification with Convolutional Recurrent Neural Networks Z Nasrullah, Y Zhao International Joint Conference on Neural Networks (IJCNN), 2019 | 67 | 2019 |
BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs K Liu*, Y Dou*, Y Zhao*, X Ding, X Hu, R Zhang, K Ding, C Chen, H Peng, ... Advances in Neural Information Processing Systems (NeurIPS) 35, 2022 | 63 | 2022 |
Contrastive Attributed Network Anomaly Detection with Data Augmentation Z Xu, X Huang, Y Zhao, Y Dong, J Li Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2022 | 48 | 2022 |
PyGOD: A Python Library for Graph Outlier Detection K Liu*, Y Dou*, Y Zhao*, X Ding, X Hu, R Zhang, K Ding, C Chen, H Peng, ... arXiv preprint arXiv:2204.12095, 2022 | 35 | 2022 |
DCSO: dynamic combination of detector scores for outlier ensembles Y Zhao, MK Hryniewicki KDD Workshop on Outlier Detection and Description, 2018 | 35* | 2018 |