作者
Fangjia Dou, Xiaolei Lv, Qi Chen, Guangcai Sun, Ye Yun, Xiao Zhou
发表日期
2020/5/18
期刊
Remote Sensing
卷号
12
期号
10
页码范围
1607
出版商
MDPI
简介
Interferometric synthetic aperture radar (InSAR) products may be significantly distorted by microwave signals traveling through the ionosphere, especially with long wavelengths. The split-spectrum method (SSM) is used to separate the ionospheric and the nondispersive phase terms with lower and higher spectral sub-band interferogram images. However, the ionospheric path delay phase is very delicate to the synthetic aperture radar (SAR) parameters including orbit vectors, slant range, and target height. In this paper, we get the impact of SAR parameter errors on the ionospheric phase by two steps. The first step is getting the derivates of geolocation with reference to SAR parameters based on the range-Doppler (RD) imaging model and the second step is calculating the derivates of the ionospheric phase delay with respect to geometric positioning. Through the numerical simulation, we demonstrate that the deviation of ionospheric phase has a linear relationship with SAR parameter errors. The experimental results show that the estimation of SAR parameters should be accurate enough since the parameter errors significantly affect the performance of ionospheric correction. The root mean square error (RMSE) between the corrected differential interferometric SAR (DInSAR) phase with SAR parameter errors and the corrected DInSAR phase without parameter errors varies from centimeter to decimeter level with the L-band data acquired by the Advanced Land Observing Satellite (ALOS) Phased Array type L-band SAR (PALSAR) over Antofagasta, Chile. Furthermore, the effectiveness of SSM can be improved when SAR parameters are …
引用总数